日本生物物理学会 第3回中国四国支部大会

2011 年 5 月 14 日 (土) ~15 日 (日) 広島大学・東広島キャンパス

講演要旨集

第3回中国四国支部大会へ参加される皆様へ —ご案内—

本支部大会は、広島大学学士会館2階レセプションホール(広島県東広島市鏡山1-3-1)を会場として行われ、一般講演および総会を開催する予定です。会員・非会員を問わず、多くの研究者、 院生・学生、社会人・一般の方々の参加を希望いたします。

参加費

参加費は無料です。名札等は会場受付でお渡しいたしますので、お受け取りください。事前に個人 宛には送付いたしません。当日でも受付は可能ですので、必ず参加登録を行ってください。

講演発表

講演には液晶プロジェクターを使用します。プロジェクターには8チャンネルの切り替え器を接続 していますので、講演者自身のPCを接続して講演できます。また、Windows PC (Microsoft PowerPoint 2003 または 2007)は用意しますので、ファイルを USB メモリでお持ちいただいてもかまいません。 画像の点検には会場入り口の受付に用意してある PC をご利用ください。Mac を使用される方は PC と接続コードのアダプターをご持参ください。発表時間は質疑・討論も含めて 15 分です。

総会

大会2日目(5月15日)の12:00~13:00まで講演会場(レセプションホール)にて開催いたしま す。日本生物物理学会中国四国支部会員の方はご出席ください。

懇親会

懇親会は5月14日(土) 19:00~21:00 に仕出し料理店「天亀」(東広島市西条町田口 2052-2, TEL: 082-425-3066) で行います。事前登録なしで懇親会への参加を希望される方は、5月9日までに担当者(片柳:kkata@sci.hiroshima-u.ac.jp)までご連絡ください。懇親会費(会員および非会員:5,000円、 学生会員 3,500円) は当日受付にて徴収いたします。

昼食

14日は生協北1食堂(~13:30 まで)、北1コープショップ(~14:00 まで)が利用可能ですが、 15日は利用できません。大学近辺の飲食店、コンビニ、スーパー(ゆめタウン学園店)などをご利 用ください。

広島大学へのアクセス

広島大学へのアクセスは広島大学ホームページのアクセスマップ (http://www.hiroshima-u.ac.jp/top/access/index.html)をご参照ください。JR 山陽本線「西条」駅からの バスは便数が多いですが、新幹線「東広島」駅からのバスは便数が極めて少ないですので、タクシー (¥2,000 程度)のご利用をお勧めします (バスの時刻表へは上記 URL からリンクがあります)。

自家用車の方は、次ページ構内案内図の①番ゲートから入構し、ゲート右の駐車場に駐車して会場 までお出でください。

宿泊

東広島市内の下記のホテルが御利用いただけます。

東横イン東広島西条駅前(http://www.toyoko-inn.com/hotel/00160/index.html)

東横イン東広島駅前(http://www.toyoko-inn.com/hotel/00172/index.html)

西条 HAKUWA ホテル (http://saijo-hakuwahotel.com/)

東広島グリーンホテルモーリス(http://www.hotel-morris.co.jp/higashi-hiroshima/)

他にもビジネスホテルが幾つかあります。詳しくは「東広島観光協会 公式ホームページ」 (http://www.hh-kanko.ne.jp/)をご参照ください。

受付 大会参加者の方は講演会場前の受付にお越しください。

- 休憩 講演会場後方に飲み物とお菓子を用意しています。飲み物の自動販売機は、学士会 館4階と北第1福利会館前にあります。
- **喫煙** 広島大学構内は指定場所を除いて全面禁煙です。会場周辺に指定喫煙場所はありませんので、喫煙は御遠慮いただきますようお願いいたします。
- その他 その他に何か問題がありましたら、受付のスタッフまでご連絡ください。

日本生物物理学会第3回中国四国支部大会実行委員会 委員長 楯 真一 (広島大学大学院理学研究科) 委 員 片柳 克夫(広島大学大学院理学研究科)

大前 英司 (広島大学大学院理学研究科)

日本生物物理学会第3回中国四国支部大会プログラム

第1日目:5月14日(土)

13:00~18:15 一般講演 講演12分、質疑応答3分

- 1-1 13:00~13:15
 光化学系Ⅱ複合体における小サブユニットタンパク質の役割
 ○杉浦美羽^{1,2},原田紗代²,岩井恵理²(¹愛媛大学・無細胞センター,²愛媛大学・院理工)
- 1-2 13:15~13:30
 PsbA1 および PsbA3 を反応中心タンパク質とする光化学系 Ⅱの機能と構造の比較
 ○大上翔悟²、杉浦美羽^{1,2} (¹愛媛大学・院理工,²愛媛大学・無細胞センター)
- 1-3 13:30~13:45

センサリーロドプシンⅡのヒドロキシルアミンによるブリーチング反応 ○田母神淳¹,菊川峰志²,池田陽一²,出村誠²,奈良敏文¹,加茂直樹¹ (¹松山大学・薬,²北大・生命科学院)

- 1-4 13:45~14:00
 タバコ由来亜硝酸還元酵素 Nii3 の X 線照射による反応誘起を利用した還元機構解明
 ○中野 祥吾¹,高橋 美佐¹,坂本 敦¹,森川 弘道¹,片柳 克夫¹ (¹広島大・院理)
- 1-5 14:00~14:15

水分子酸化を可能とする光合成系 Ⅱ 反応中心クロロフィルの酸化力 ○石北 央^{1,2}、川上恵典³、梅名泰史⁴、神谷信夫³、沈 建仁⁵(¹京都大・生命科学系キャリ アパス、²JST・さきがけ、³大阪市立大・理、⁴大阪大・蛋白研、⁵岡山大・理)

1-6 14:15~14:30

光合成酸素発生を可能にする光化学系Ⅱの原子分解能構造 ○沈建仁¹,梅名泰史²,川上恵典³,神谷信夫³ (¹岡山大・院自然科学・²阪大・蛋白研,³大阪市大・院理)

- 14:30~14:45 休憩
- $1 7 \quad 14:45 \sim 15:00$

化学情報と視覚情報によるアリの採餌行動の定量的解析

○荻原悠佑、前田一樹、西村信一郎、泉俊輔、秋野順治¹、中里研一²、粟津暁紀、西森拓 (広島大院理、¹京都工繊大工芸、理研²)

1-8 15:00~15:15

マウス視床下部室傍核に存在するヒスタミン H1 受容体発現ニューロンの選択的破壊による摂 食亢進

○堀尾修平¹, 箕越靖彦², 小林和人³, 上山敬司⁴, 福井裕行¹(¹徳島大・院・ヘルスバイオサ イエンス, ²生理研・発達生理学研究系, ³福島医大・生体情報伝達研, ⁴和歌山医大・医・解剖)

- 1-9 15:15~15:30
 - 視覚サイクルの起原

○津田基之(徳島文理大学)

- 1-10 15:30~15:45
 インフルエンザウイルスの情報処理能力
 ○堺 立也(川崎医大・微生物学)
- 1-11 15:45~16:00
 ミドリムシ集団の強光場中でのパターン形成
 ○野田脩平¹,末松 J.信彦²,粟津暁紀¹,西森拓¹
 (¹広島大学・院理・数理,²明治大・先端数理科学研)
- 1-12 16:00~16:15
 負の走光性レセプターpPR (NpSRII)と大腸菌走化性レセプターTsr の機能的相互作用
 ○奈良敏文,田母神淳,加茂直樹(松山大学・薬学部)

16:15~16:30 休憩

1-13 16:30~16:45

行動テストバッテリーによる神経変成疾患モデルマウスの認知機能評価 〇岸本泰司¹,長尾 明¹,東原絵理奈¹,福田明子¹,桐野 豊¹ (¹徳島文理大学・香川薬・生物物理)

1-14 16:45~17:00

排除体積効果を考慮した細胞膜上シグナル伝達系モデル

○藤井 雅史、粟津 暁紀、西森 拓(広島大学・院理・数理)

1-15 17:00~17:15

大腸菌走化性受容体 Tar と基質との相互作用の等温滴定型熱量計(ITC)による測定:比較的 結合が弱い場合の解析

角井 碧¹、宮内正二²、下野和実²、奈良敏文²、田母神淳²、○加茂直樹² (¹北海道大学生命科学院、²松山大学薬学部)

1 - 16 17:15 \sim 17:30

DNA 塩基配列とアミノ酸モデルによる双極子ー双極子相互作用

○三枝俊亮、相田美砂子(広島大院理・広島大 QuLiS)

1-17 17:30~17:45

溶媒中におけるポリマーの立体構造特性を解析するための効率的な方法 〇天野健一¹,尾嶋拓²,木下正弘²(¹京大院・エネルギー科学,²京大・エネルギー理工)

1-18 17:45~18:00

β₂-Microglobulin フラグメントが形成するアミロイド線維構造の真空紫外 CD 解析 〇松尾光一^{1,2}, 平松弘嗣³, 月向邦彦⁴, 生天目博文¹, 谷口雅樹¹, Robert W. Woody² (¹広島大・放射光,²コロラド州立大, ³岡崎統合バイオ, ⁴広島大・サステナ)

1-19 18:00~18:15

筒状容器における大球溶質の挿入と放出:単純化モデルを用いたシャペロニン GroEL に関する理論解析

○天野健一¹,木下正弘²(¹京大院・エネルギー科学,²京大・エネルギー理工)

19:00~21:00 懇親会(天亀)

第2日目:5月15日(日)

8:45~12:00 一般講演 講演12分、質疑応答3分

2-1 8:45~9:00

一細胞の自己組織化現象

○竹本 あゆみ¹、柴田 達夫^{1,2}(¹広島大学・院理・数理、²理研・発生・再生研)

- 2-2 9:00~9:15 DHFRの局所変異に対する分子内揺らぎの変化の理論的考察 海田大貴、○粟津暁紀、西森拓(広島大学・院理・数理)
- 2-3 9:15~9:30

グルタミン酸結合に伴う GluR2 リガンド結合ドメインの構造変化の MD シミュレーション ○伊藤 悦朗(徳島文理大学・香川薬学部)

2-4 9:30~9:45

脂質二重膜内パッキング状態のイメージング解析 〇松木 均¹,後藤優樹²,玉井伸岳¹ (¹徳島大院・ソシオテクノサイエンス研,²徳島大院・ヘルスバイオサイエンス研)

2-5 9:45~10:00

メリチンのリン脂質膜内での非アレニウス揺らぎ 七種 和美², ○東 政行¹, 粟津 暁紀¹,泉 俊輔¹ (¹広島大学・院理・数理,²横浜市大・院生命ナノシステム)

2-6 10:00~10:15

圧力摂動熱量法によるエステルおよびエーテル結合型リン脂質膜の体積挙動の解明 〇玉井伸岳¹,南部優子²,後藤優樹³,松木 均¹(¹徳島大院・ソシオテクノサイエンス研,²徳 島大院・先端技術科学教育部,³徳島大院・ヘルスバイオサイエンス研)

10:15~10:30 休憩

2-7 10:30~10:45

コケ植物の環状ビスビベンジル分子マルカンチンによる抗インフルエンザウイルス活性 〇畠山 大¹,岩井佑磨¹,村上宏起²,五味康行²,奥谷武史¹,橋本敏弘³,浅川義範⁴, 奥野良信²,石川豊数²,越後典子¹,葛原 隆¹(徳島文理大・薬・¹生化学,³生薬学,⁴薬化学, ²阪大微研・観音寺研究所)

2-8 10:45~11:00

フグヘムオキシゲナーゼ活性の塩基性環境への順応 高田さゆり,植高梢,〇右田たい子(山口大学・農・生物機能)

2-9 11:00~11:15

ジヒドロ**葉酸還元酵素 D27E 変異体の機能解析** 〇大前英司¹、和田侑士¹、楯真一¹、月向邦彦¹、桑島邦博² (¹広島大学・院理、²岡崎統合バイオ)

2-10 11:15~11:30

哺乳類の100kDa ヘキソキナーゼの酵母ミトコンドリアへの結合の可能性 〇尾華絵里子^{1,2}、栗間絵梨^{1,2}、橋本 満³、山本武範¹、篠原康雄^{1,2} (¹徳島大疾患ゲノム研、²薬、³松山大薬)

2-11 11:30~11:45

ガレクチンの糖認識ドメインについての NMR を用いた解析

○野中康宏¹,小川崇¹,中北愼一²,神鳥成弘²,西望²,中村隆範¹
 (¹香川大学・医,²香川大学・総合生命科学研究センター)

2-12 11:45~12:00

酸化 LDL 受容体蛋白質 LOX-1 の基質認識機構の解明

○杉原 守、山田 梨紗都、編田 宏一、楯 真一(広島大学・院理・数理)

12:00~13:00 総会

光化学系 II 複合体における小サブユニットタンパク質の役割

杉浦美羽^{1,2*},原田紗代²,岩井恵理² (¹愛媛大学・無細胞センター,²愛媛大学・院理工) * miwa.sugiura@ehime-u.ac.jp

植物やラン藻などの酸素発生型の光合成生物は、光合成電子伝達系によって太陽光エ ネルギーを化学エネルギーへ変換する過程で酸素を放出する。この一連の反応の初発反応は 葉緑体チラコイド膜にある光化学系 II (PSII) 複合体が担っている。680 nm 付近の光があ

たると、PSII 反応中心のクロロフィル(Chl) P_{680} と Pheo との間で電荷分離が起こり、 Mn_4Ca 錯体が水を酸化して 電子を引き抜く。得られた電子は酸化還元電位の異なるコ ファクター間を伝達され (図 1)、光化学系 I の最終段階で NADP⁺を還元する。

PSII は Chl、Pheo、Mn Ca、ß-carotene、heme、lipid などの 80 以上のコファクターを結合した 20 サブユニッ トタンパク質で構成される超複合体である。電子伝達と水 の酸化反応に関わるコファクターの殆どは D1 タンパク質 に結合しているため、D1 は PSII で最も重要なサブユニッ トである。

図 1. 光化学系 II の電子伝達

好熱性ラン藻 Thermosynecococcus elongatus のゲノムには D1をコードする遺伝子 psbA が 3 つ存在し、通常の条件では PsbA1 が PSII の D1 であるが、光ストレスを受ける と部分構造の異なる PsbA 3 (PsbA1 と 21 アミノ酸が異なる)に置換される。本研究では、 D1 の部分構造の違いが PSII の機能と複合体構造にどのような影響を与えるのかを調べる ために、PSII を構成する小サブユニットタンパク質 PsbJ または Psb30 (図 2)を遺伝子組 換えによって PsbA1-PSII および PsbA3-PSII 複合体から欠失させ、これらの複合体構造お よび光合成機能を調べた。D1 に近接する PsbJ を欠失させると、PsbA1-PSII ではサブユニ ット間の相互作用が弱くなって複合体構造を正常に保てず、7 サブユニット以上が外れ、水 の酸化機能も 30%に低下した。一方、PsbA3-PSII 複合体では、PsbJ のみが欠失しただけ

で基本的な光合成機能は保持していた¹¹¹。D1 か ら 15 Å 以上離れたところに位置する Psb30 を 欠失させたとき、PsbA1-PSII と PsbA3-PSII の 両方とも Psb30 以外のサブユニットの欠失は認 められず、電子伝達には直接関係のない Cytb₅₅₉の酸化還元電位の低下が認められたも のの、光合成機能には大きな変化は認められな かった^[2]。これらのことから、D1の部分構造の 違いは他のサブユニットとの相互作用に大きく 関わっており、複合体構造の保持に重要な役割 をしていることが分かった。

図 2. 光化学系 II の構造 (Top View)

Reference:

講演番号

1-1

- [1] Sugiura, M. et al., J. Biol. Chem., (2010) 285, 30008-30018
- [2] Sugiura, M. et al., Biochim. Biophys. Acta, (Bioenergetics), (2010) 1797, 1546-1554

PsbA1 および PsbA3 を反応中心タンパク質とする光化学系 II の機能と構造の比較

大上 翔悟^{1*}, 杉浦 美羽^{1,2} (¹愛媛大学・院理工, ²愛媛大学・無細胞センター) * w851004a@mails.cc.ehime-u.ac.jp

ラン藻や植物は、光合成電子伝達によって光エネルギーを化学エネルギーに変換する。初発の反応は光化学系II(PSII)が担っており、電子伝達に関わるほとんど全てのコファクターは反応中心タンパク質 D1 に配位している。そのため、D1 が損傷するとエネルギー変換ができず、光合成生物は、生命活動を維持できなくなる。好熱性ラン藻 Thermosynechococcus elongatus のゲノムには D1をコードする遺伝子が 3 つあり、快適な条件では主に psbA₁が発現しているが、光ストレスによって psbA₃が誘導されることが分かってきた。PsbA1と PsbA3 では 344 アミノ酸のうちの 21 アミノ酸が異なっており、D1 が PsbA1 である PSII と PsbA3 である PSII が同じ光合成機能を持つとは考えにくい。そこで、本研究では遺伝子組換えによって作製した psbA₂ および psbA₃を破壊して PsbA1-PS II のみを作る T. elongatus WT*1 株、PsbA3-PS II のみを作る WT*3 株、および、PsbA1-PS II と PsbA3-PS II の両方を作る WT 株を用いて、細胞レベル、および、タンパク質レベル で光合成機能を比較した。

WT*1 および WT*3 から単離した PSII(それぞれ PsbA1-PSII、PsbA3-PSII)の水の酸化活性 を比較したところ、それぞれ 3000 µmol O₂ (mg Chl)⁻¹ h⁻¹、5000 µmol O₂ (mg Chl)⁻¹ h⁻¹で、光ストレ ス時に作られる PSII の方が通常時に作られる PSII よりも 1.7 倍高い光合成機能を持つことが明ら かになった。細胞増殖を比較すると、WT*3 は WT と同じであったのに対し、WT*1 は増殖が始まる までの誘導期が WT および WT*3 に比べて約 6 倍長く、WT*1 は強い光に対して敏感であることが 示唆された。強光照射下では光合成機能が阻害されることが知られているので、PsbA1-PSII と PsbA3-PSII の光阻害を比較するために、一定時間、強光(800 µmol photons m⁻² s⁻¹)を細胞に照 射して水の酸化活性を測定した。その結果、照射 4 時間後には WT*3 は照射前の活性の 30%が、 WT*1 は 70%が阻害されることが分かった。強光照射 4 時間後に、通常の光強度(60 µmol photons m⁻² s⁻¹)に戻すと、WT*3 は1時間以内に完全に活性が回復したのに対して、WT*1 では 2 時間後 でも活性の回復は認められず、完全な回復に約 20 時間かかった。

これらの強光による水の酸化活性の低下の違いが、PSIIの反応中心タンパク質 D1 (PsbAx) の分解速度の違いによるものか、水の酸化触媒 Mn₄Ca クラスターの不活性化速度の違いによるも のか、もしくは、D1の生合成速度速度によるものかを明らかにするために、まず、タンパク質合成阻 害剤を加えて強光照射した細胞の活性を測定した。その結果、WT*1の方が WT*3 よりも速く活性 が低下したので、PsbA1-PSII タンパク質の分解、および/もしくは、Mn₄Ca クラスターの不活性化 が速いことが示唆された。更に、これらの試料を抗 D1 抗体および抗 Cytc₅₅₀抗体を用いてイムノブ ロット分析したところ、WT*3 では WT*1 に比べてプロセシング前の前駆体 D1 の量が多いものの、 プロセシング後の D1 の分解速度に大きな違いは認められなかった。以上の結果から、部分構造の 異なる反応中心 D1 で構成される2つの PSII は、強光時の分解速度は同じであるが、Mn₄Ca クラス ターの失活速度が異なることが明らかになった。自然において、*T. elongatus* は強光によるダメージ を避けるために、ストレス条件下では、PsbA1 より機能の高い PsbA3 を作ることによって、光合成機 能の低下を抑えると同時に、機能を早く回復させて生命活動を維持していると考えられる。

センサリーロドプシン II のヒドロキシルアミンによるブリーチング反応

田母神淳^{1*}, 菊川峰志², 池田陽一², 出村誠², 奈良敏文¹, 加茂直樹¹
 (¹松山大・薬, ²北大・生命科学院)
 * jtamoga@cc.matsuyama-u.ac.jp

センサリーロドプシン II (SRII) は、高度好塩菌の細胞膜に存在する負の走光性レセプタ ータンパク質である。SRII は発色団として all-trans レチナールを含有しており、光を吸収 すると、レチナールの光異性化をトリガーとし、いくつかの光中間体を経てもとの状態に 戻る光化学反応サイクル (フォトサイクルと呼ぶ)を示す。SRII は、オプシンと発色団で あるレチナールとで構成されており、お互いはシッフ塩基結合を介して連結している。ヒ ドロキシルアミン (NH₂OH) は、シッフ塩基と反応することでレチナールを遊離し、ブリ ーチング反応を引き起こす。ヒドロキシルアミンは水溶性試薬であることから、SRII のタ ンパク質内部が親水的な環境になったときにシッフ塩基と反応しやすい。したがって、ヒ ドロキシルアミンによるブリーチング反応を調べることで、SRII のフォトサイクル中のど の中間体の時にタンパク質内部が親水的環境になるような変化が起こるのかを調べること ができる。そこで、本研究では SRII (特に、H. salinarum 由来の SRII (HsSRII))のブリー チングがどの中間体時に起きているのかを同定し、またそのときのブリーチング速度定数 の値を算出することを目的に実験を行った。

最初に、暗下と光照射下でHsSRIIのブリーチングを調べたところ、光照射下でブリーチ ング速度が大きく増大したことから、HsSRIIとヒドロキシルアミンとの反応は光中間体時 に起きていることを確認した。続いて、pHを変えながらHsSRIIのブリーチングを調べたと ころ、ブリーチング速度にpH依存性が見られ、さらにM中間体の存在寿命とブリーチング 速度との間にはよい相関関係が見られた。測定したpH領域で存在寿命にpH依存性が見られ るのはM中間体のみであることから、ヒドロキシルアミンはM中間体で優位に反応すること が予測された。そこで、M中間体時におけるブリーチングの速度定数の値の算出を行うため、 次のような実験を行った。まず、HsSRIIのフォトサイクル一回あたりのヒドロキシルアミ ンによるブリーチングを見積もるために、励起光にフラッシュ光を用い、ブリーチングを 測定した。また、M中間体の崩壊速度のみを選択的に加速するアザイドを添加することで、 M中間体の存在量を変化させ、様々なM中間体存在量でのブリーチング速度を求めた。さら に、この実験を励起光の光強度を変えながら行った。各光強度下での測定値を、横軸:M中 間体量、縦軸:ブリーチング速度としてプロットしたところ、各測定点は、ほぼ同一の直 線上に分布し、切片を通る直線の関係が得られた。この結果は、HsSRIIはM以外の中間体時 にもヒドロキシルアミンと反応するということを意味している。よって、HsSRIIのブリー チングは、(HsSRIIのブリーチング速度) = $k_M \cdot [M] + k_I \cdot [M以外の中間体] (k_M, k_I は、そ)$ れぞれの中間体時におけるブリーチング速度定数を表す)という式で表すことができる。 直線の傾きからM中間体時におけるブリーチングの速度定数kmは、1.5×104 [/flash]と算出さ れた。一方、同様な実験をNpSRII(N. pharaonis由来のSRII)についても実施したところ、 NpSRIIではM中間体時にしかブリーチングが起こらなかった。この結果は、ヒドロキシル アミンとの反応性に対する両タンパク質間での違いを表している。本発表では、これらの 結果をもとに、両タンパク質間の光安定性の違いなどについても考察したい。

講演番号 1-4

タバコ由来亜硝酸還元酵素 Nii3のX線照射による反応誘起を利用した還元機構解明

中野 祥吾^{1*}, 高橋 美佐¹, 坂本 敦¹, 森川 弘道¹, 片柳 克夫¹ (¹広島大学大学院理学研究科数理分子生命理学専攻) * shg-nakano@hiroshima-u.ac.jp

[序論] 植物に発現する亜硝酸還元酵素(以下 NiR)は NO2⁻を NH4⁺に還元する酵素で、シロ ヘムと[4Fe-4S]クラスターを活性中心として持っている。現在までに我々は、タバコの葉に 発現する NiR、Nii3 を 1.25Å 分解能で決定した。この Nii3 の様々な基質複合体構造を決定 し、NiR の反応機構を分子レベルで解明することを目的に研究を行ってきたが、X 線照射に よる電子密度の奇形化により、反応機構の解明が困難であった。そこで Nii3 において、X 線 照射によりどのような反応が誘起されたのかを確かめるため、Nii3-wildtype (WT)と Nii3-NO2 複合体結晶について可視光顕微分光測定と X 線構造解析を行った。

[実験方法] Nii3-WT と Nii3-NO₂結晶を作成し、SPring-8 の BL38B1 にて結晶構造解析と 顕微分光を併用して実験を行った。ここで吸収線量によるこれらの結晶のスペクトル変化 を確認するため、"X 線照射前 (0.0MGy)"、"X 線回折像の確認後 (0.0~0.08MGy)"、"一回 目のX 線回折データセット収集後 (0.08~1.6MGy)"、"二回目の X 線回折データセット収 集後 (1.6~3.2MGy)"、"二回目の X 線回折データセット収集後 (1.6~3.2MGy) に室温に 戻して anneal したもの"の5条件について顕微分光測定を行った。これらの結晶を用いな がら上記の一回目(低線量)と二回目(高線量)のデータセットを用いて X 線構造解析を行い、 Nii3-WT、Nii3-NO₂共に X 線照射の時系列に対応する構造を 1.6Å 分解能で決定した。

[結果と考察] まず Nii3-WT と Nii3-NO₂の顕微分光測定を行った。結果、Nii3-WT と Nii3-NO₂は共に吸収線量の増大に伴い、シロヘムの α 吸収帯である 567nm のピークが 553nm へと blue-shift することが明らかとなった。加えてこれらの差スペクトル (X 線照射後 (3.2MGy) — X 線照射前 (0.0MGy))は、Nii3-WT、Nii3-NO₂共に、結晶状態にあるにもかか わらず溶液状態におけるホウレンソウ由来 NiR が 2 電子還元された時の UV-Vis スペクト ルと非常に良く一致した。よって Nii3 は結晶中においても X 線照射により 2 電子還元され ることを示すことができた。

次に X 線照射により、Nii3 構造にどのような変化が生じるかを確かめるために低線量 (LD)と高線量(HD)でそれぞれ Nii3-WT と Nii3-NO2の構造解析を行った。ここで Nii3-WT のLD と HD の構造を比較したところ、シロヘムの遠位に LD では見られなかった水分子 A の電子密度が HD には現れていることが明らかとなった。この水分子 A はその位置関係か ら、X 線照射により生じた 2 電子の過剰な負電荷を、2 つの塩基性アミノ酸残基の側鎖と水 素結合を新たに形成することにより中和する役割を果たしていると考えられる。また、Nii3-NO2の LD と HD 構造から、Lys224 と Arg179 に近い N-O1 結合の電子密度が、もう一方の N-O 結合の電子密度と比較して弱くなっていることを確認した。加えてこの N-O 結合に近 い水分子 B がマルチサイトを持つことを確認した。

水分子酸化を可能とする光合成系 Ⅱ反応中心クロロフィルの酸化力

○石北 央^{1,2}、川上恵典³、梅名泰史⁴、神谷信夫³、沈 建仁⁵(1京都大・生命科学系キャ リアパス、²JST・さきがけ、³大阪市立大・理、⁴大阪大・蛋白研、⁵岡山大・理) * hiro@cp.kyoto-u.ac.jp

私たちが呼吸で消費する酸素はPhotosystem II (PSII)における一連の光励起電子移動反応 による産物である。水分解には、水から4個のプロトンと4個の電子を引き抜く必要があ る。クロロフィル(Chl) 二量体P680こそが、水から電子を引き抜く究極の電子受容体である。 通常Chl単量体の一電子酸化における酸化還元電位 (E_m) は+600~700 mVであり、水の E_m よ りも低いため、水分子から電子を引き抜くことは不可能である。しかし、速度論的解析の 結果から、P680はおよそ+1100 mV以上の E_m を持つと推定されている [1]。これは、P680か らの電子受容体となる事実と矛盾しない。ここでPSIIと同じType II反応中心である紅色光合 成細菌の光合成反応中心 (Purple bacterial photosynthetic Reaction Centers; PbRC)のChl二量体 P870を見てみると、実験的手法によりその E_m は+500 mV程度とずっと低いことがわかって いる [2]。また、Type I反応中心であるPSIのChl二量体P700の E_m も、P870同様+500 mV程度 と測定されているので[3]、PSIIのP680の+1100 mV以上という E_m は、異常に高い [4]。

酸素発生反応において引き抜かれたプロトンの行方に関しては諸説あるが、結晶構造解 析とアミノ酸残基のpK_a値から、プロトン排出経路(H⁺ exit pathway)の存在が提唱されている [5]。そこでは、水分解・酸素発生サイトMn₄CaO₅ [6]からバルク水領域周辺までの蛋白質内 を荷電・極性アミノ酸によるH⁺ exit pathwayが走り、水分解の副産物であるプロトンは Mn₄CaO₅近傍の反応場からバルク水領域へと速やかに除去される。このようにPSIIでは水の 分解を効率よく行う工夫がある。

反応中心の電子移動に関する研究は、分光学的手法などの実験的手法を中心に世界中で 行われている。しかし、コファクターの多い複雑な膜タンパク質であること、実験的手法 による解析がしばしば困難であること(タンパク質中に存在する他の色素分子の分光吸収 体が重なってしまうなど)により、未解明の部分は多い。一方、近年のX線結晶構造解析の 著しい進展により、PSI・PSII共に原子レベルで詳細なタンパク質構造が明らかになりつつ ある [6]。ここでは、タンパク質の立体構造情報を用いた理論解析により、PSIIでの水分解 を可能とするChl 2量体P680の酸化力について述べる。

1. Rappaport, F. et al. (2002) Biochemistry 41, 8518-8527.

2. Williams, J.C. et al. (1992) Biochemistry 31, 11029-11037.

3. Brettel, K. (1997) Biochim. Biophys. Acta 1318, 322-373.

4. Ishikita, H. et al. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 9855-9860.

5. Ishikita, H. et al. (2006) Biochemistry 45, 2063-2071.

6. Umena Y. et al. (2011) Nature, in press

Atomic structure of photosystem II that enables photosynthetic water-splitting

Jian-Ren Shen^{1*}, Yasufumi Umena², Keisuke Kawakami³, Nobuo Kamiya³ ¹Graduate School of Natural Science and Technology/Fuculty of Science, Okayama University; ²Institute for Protein Research, Osaka University; ³Department of Chemistry, Graduate School of Science, and The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University.

* shen@cc.okayama-u.ac.jp

Photosystem II (PSII) is a multi-subunit membrane protein complex consisting of 20 subunits with a total molecular mass of over 350 kDa. The structure of dimeric PSII has been resolved at 3.8 - 2.9 Å resolutions from two thermophilic cyanobacteria, Thermosynechococcus elongatus and T. vulcanus, which provided the arrangement of protein subunits and most of the cofactors involved in the electron transfer reactions, and established the basis for further elucidation of the PSII functions. However, the detailed structure of the Mn₄Ca-clulster, the catalytic center of light-induced water oxidation, has not been resolved due to the limited resolution as well as possible radiation damage induced during the X-ray experiment. We have improved the resolution and diffraction quality of PSII crystals significantly, and succeeded in solving the crystal structure of PSII from T. vulcanus at 1.9 Å resolution (1). In the crystal structure obtained at 1.9 Å resolution, the electron density distributions for each of the 5 metal ions in the Mn₄Ca-cluster were clearly separated, allowing us to locate the individual metal atoms as well as all of the ligands to the metal cluster unambiguously. Five oxygen atoms forming the oxo-bridges between the metal ions were identified by difference Fourier map, and several water molecules were found to be associated with the metal cluster, some of which may function as substrates for the oxygen-evolving reaction. Two chloride-binding sites were identified based on anomalous diffraction data taken at 1.75 Å, which were located in the same positions as in Br- or I-substituted PSII reported previously (2). In addition, more than 1300 water molecules per monomer were found in the structure of PSII dimer. Some of the water molecules form hydrogen-bond networks linking the catalytic site and the bulk phase. We will discuss the detailed structure of PSII at the atomic resolution.

(1) Umena Y., Kawakami K., Shen J.-R. and Kamiya N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, *Nature*, published online on April 18, 2011.

(2) Kawakami, K., Umena, Y., Kamiya, N. & Shen, J.-R. (2009) Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography, *Proc. Natl. Acad. Sci. U.S.A.* 106, 8567–8572.

化学情報と視覚情報によるアリの採餌行動の定量的解析

荻原悠佑、前田一樹、西村信一郎、泉俊輔、秋野順治¹、中里研一²、粟津暁紀、西森拓 (広島大院理、¹京都工繊大工芸、理研²)

m106738@hiroshima-u.ac.jp

蟻はコロニーを形成し生活する社会性昆虫の典型例であり、個々の個体が種々のコ ミュニケーションツールを使うことで、様々な集団行動を可能にしている。例えば 採餌の際に、まず餌を見つけた蟻がフェロモンを分泌しながら巣に戻り、それを他 の蟻が辿っていくことでトレイルを形成する。このように化学情報のやりとりによ って、遠くにある餌を効率よく巣に持って帰ることができる[1]。またある種の蟻は、 太陽光の角度、巣からの歩数、景色などの視覚情報をもとに、巣の位置を把握して いる事が報告されている[1][2]。我々は、化学情報と視覚情報の双方に従うトビイロ ケアリの採餌行動に関する実験を行った。実験の初期設定として、トビイロケアリ にとって化学情報と視覚情報が矛盾した状況を作り、採餌行動の様子を撮影し、画 像解析を行った。その結果、

i)トビイロケアリは、餌場において巣の方向に関し化学情報と視覚情報に大きな齟齬がある場合、視覚情報を優先する。

ii)化学情報に従い帰巣しているトビイロケアリは、帰巣途中から化学情報と視覚情報の齟齬が大きくなった場合、化学情報を優先する。

 iii)トビイロケアリが化学情報と視覚情報のどちらに従うかの選択には、視覚情報と 化学情報各々が指し示す方向のずれや、巣と餌場を結ぶ初期経路と最短経路の距離 差も影響する。

ことが分かった。

図1:実験の初期設定

図2:トビイロケアリのトレイル形成の様子。 下図が実験開始10分後のトビイロケアリの軌

[1] S. E. F. Evison, O. L. Petchey, A. P. Beckerman and F. L. W. Ratnieks , 2008, Behav Ecol. Sociobiol.63: 261-267 (2008)
[2] R. Wehner, F. Raber, Experientia. 35:1569-1971(1979)

マウス視床下部室傍核に存在するヒスタミン H1 受容体発現ニューロンの選択的破壊によ る摂食亢進

堀尾修平^{1*}, 箕越靖彦², 小林和人³, 上山敬司⁴, 福井裕行¹ (¹徳島大・院・ヘルスバイオサイエンス, ²生理研・発達生理学, ³福島医大・生体情報伝 達, ⁴和歌山医大・医・解剖)

* horio@ph.tokushima-u.ac.jp

視床下部は摂食中枢、満腹中枢があり、摂食調節の中心を担っている脳部位である。本研 究では摂食調節を担う新規なニューロンを見出すために、ヒスタミンH1受容体発現ニュー ロンに注目した。その理由は、H1受容体欠損マウスが肥満になること、動物の視床下部へ のH1拮抗薬投与で摂食が促進されることから、H1受容体が摂食調節に重要であると考えら れることにある。実際にマウス視床下部の室傍核PVHと腹内側核VMHにH1受容体が非常 に強く発現していることを確認した。これらの神経核は摂食抑制の中心と考えられている 部位である。これらの部位に存在するH1受容体発現ニューロンを選択的に死滅させ、摂食 行動への影響を調べることで、当該ニューロンの機能を明らかにしようと考えた。この目 的のために、H1受容体発現細胞にイムノトキシン感受性であるヒトinterleukin-2 receptor α-subunit (IL-2Rα)が発現しており、イムノトキシン投与によりこの細胞が選択的に死滅 する。実際に、マウスにおけるヒトIL-2Rαの発現はH1受容体の発現とほぼ一致し、室傍核 PVHへのイムノトキシン注入によりH1受容体発現ニューロンが選択的に死滅した(図1)。 そこでこのマウスを用い、摂食量、体重の変化を調べた。PVHのH1受容体発現ニューロン

の選択的死滅により、摂 食量が増加し、体重もそ れに伴って増加した(図 2)。この結果は、PVH のH1受容体発現ニュー ロンが摂食抑制に深く関 わっていることを示して いる。

トキシン注入なし

左側のみ注入

両側注入

視覚サイクルの起原

津田基之

(¹徳島文理大学)

視覚は網膜の視物質ロドプシンが光を受容して、視細胞内の情報伝達系が駆動して成立する。 ロドプシンの発色団 11-シス型レチナールは光受容により全トランス型に異性化後、オプシン タンパク質とレチナールに分解する。従って、視覚を維持するためには全トランス型レチナー ルを 11-シス型レチナールに再異性化してロドプシンを再生する仕組みが存在しこれを視覚サ イクルという。脊椎動物では視興奮は視細胞で、視覚サイクルは網膜色素上皮細胞でおこなわ れ、多くのタンパク質が関与している。頭足類イカ・レチノクロームによるレチナールの光再 異性化の研究がある。

1999年に Hao & Fong(J.Biol.Chem)の脊椎動物のレチナール異性化分子として RGR の発見 を契機に多くの研究が始まった。RGR はイカのレチノクロームと同様に全トランスレチナー ルを結合し、光により11シスレチナール光異性化する。我々は最も原始的な脊索動物である ホヤの cDNA プロジェクトに参加し3つのオプシンを見出し、その一つ(*Ci-opsin3*)が脊椎動 物のRGR、イカのレチノクロームと相同性のあることを見出した。*RGR* 遺伝子欠損マウス での研究で RGR は視覚サイクルに必須ではないことが示唆された(Maeda et al. 2003)。 2005年、Jinら (Cell) 3つのグループは RPE65 がレチナール異性化酵素であることを示し た。我々は 2003年にホヤにおいて RPE65のホモログを報告し視覚サイクルの起原を研究し てきた。

本年で70歳を向かえ、科研費基盤研究の最終年度を迎えるのを機会に、研究を離れ、陶芸 に専念するため、最後の講演として、科研費の課題でもあり視覚サイクルの起原につてまとめ る。

インフルエンザウイルスの情報処理能力

堺 立也 (川崎医大・微生物学) sakai@med.kawasaki-m.ac.jp

インフルエンザウイルスには、運動をおこなう能力や情報処理の能力はないとされてきた. しかし最近の研究により、インフルエンザウイルスが細胞表面を二次元的に運動する能力 を持つことが明らかになった.ウイルスの運動は、ウイルス粒子表面に存在するスパイク 蛋白質の一種ヘマグルチニンが細胞表面のシアロ糖鎖との結合を入れ替えることで生じる. さらに、ウイルスの運動にはもうひとつのウイルススパイク蛋白質であるノイラミニダー ゼ(シアロ糖鎖分解酵素)が関与すること、運動が宿主細胞への侵入の効率を上げることも明 らかになっている.ところで、運動時にノイラミニダーゼが働いているとすると、ウイル ス粒子の通過した領域のシアロ糖鎖は破壊されているはずである.そこでウイルスは、常 にもとにいた場所から離れるように運動し、あたかも記憶(情報処理能力)を持っているよう に振る舞うのではないだろうか.この仮説を証明するため、ヒトあるいはトリを宿主とす るインフルエンザウイルスの運動の軌跡を解析したところ、ヒトウイルスはランダムに運 動するのに対し、トリウイルスはあたかも記憶を持つように振る舞うことがわかった.ト リウイルスは、ノイラミニダーゼによりシアロ糖鎖密度の減少という情報を細胞表面に書 き込み、ヘマグルチニンによりその情報を読み取りながら細胞表面を運動することで、効 率的に細胞へ侵入していると考えられる.

ミドリムシ集団の強光場中でのパターン形成

野田 脩平¹*, 末松 J. 信彦², 粟津 暁紀¹, 西森 拓¹ (¹広島大学大学院理学研究科 数理分子生命理学専攻,² 明治大学先端数理科学研究科) *m100298@hiroshima-u.ac.jp

ゾウリムシやミドリムシ等の微生物は、集団になることで、生物対流と呼ばれる我々の目で見るこ とのできるスケールの、秩序的なパターンを形成することが知られている。本研究では、他の微生物 と異なる特徴の生物対流形成を示す、ミドリムシ集団の動的構造形成 [1] に注目して研究を行った。 まず実験において、ミドリムシの培養液に下方から強い光を照射すると、ミドリムシの強い光からの 逃避と重力による落下によって、ミドリムシ集団が乱流様のパターンを形成することを見い出した。 そこで、上記のような効果を考慮したミドリムシ集団の数理モデルを構築し、数値シミュレーション を行った。その結果数理モデルにおいても、ミドリムシ集団の乱流様のパターンに定性的に似た現 象が観察された。更に、この数理モデルでは、コントロールパラメータを変化させることによって、 乱流様のパターンの他にも、(i) 落下点を維持し、線状のクラスターが左右へ移動するパターン、(ii) 左右の壁から交互に落下を繰り返すパターン、(iii) 一方の壁からのみ落下を繰り返すパターン、の3 種類のパターンが観察された。そこで再び、実験用セルに入れるミドリムシの培養液の高さをコント ロールパラメータとした場合の実験を行い、数理モデルで得られた乱流様のパターン以外のパター ン形成ついて考察した。

図 1: 実験での乱流様のパターン

図 2: シミュレーション結果 (上:乱流様のパターン、下:(i))

参考文献

[1]N. J. Suematsu, A. Awazu, S. Izumi, S. Noda, S. Nakata and H. Nishimori, To appear in J. Phys. Src. Jpn. (2011) arXiv:1002,4271(2010)

負の走光性レセプターpPR (NpSRII) と大腸菌走化性レセプターTsr の機能的相互作用

奈良敏文^{*},田母神淳,加茂直樹 (松山大学 薬学部 生物物理化学研究室) * tnara@cc.matsuyama-u.ac.jp

*Np*SRII は高度好塩菌 *Natronomonus pharaonis* に存在するロドプシン様レチナールタンパ ク質で、緑光を受容すると隣接するトランスデューサー*Np*HtrII にシグナルを伝えて忌避応 答する。*Np*SRII-*Np*HtrII 間のシグナル伝達の分子機構を明らかにする目的で、類似する大 腸 菌 セリン 走 化 性 レ セ プ ター Tsr(*Ec*Tsr) と の 機 能 的 複 合 体 作 成 を 試 み た。 *Np*SRII-*Np*HtrII 間相互作用に重要と考えられる 3 カ所のアミノ酸側鎖を *Ec*Tsr に導入し (A32E、W194S、V206N: ESN と表記)、*Np*SRII と共に大腸菌 UU1250 株 (*aer*, *tsr*, *tar*, *tap*, *trg*) に発現した。その結果、野性型 Tsr の複合体 *Np*SRII-*Ec*Tsr(WT) は光応答を示さない が、 1/8 秒の 500 nm 光照射に対して変異 Tsr(ESN)の複合体 *Np*SRII-*Ec*Tsr(ESN) は弱いな がら忌避応答を示すことがわかった。

大腸菌のもう一つのメジャーな走化性レセプター、アスパラギン酸走化性レセプターTar でも同様の変異体 *Ec*Tar(ESN)を作成した (*Np*SRII-*Ec*Tar(ESN)複合体)。しかし、照射光無 し(暗状態)でもタンブルな泳ぎを強く示し、1/8 秒の 500 nm 光照射への忌避応答は見ら れなかった。Tsr と Tar の高い類似性を考えると、両者のシグナル産生機構も共通すると考 えられ、この複合体でも *Np*SRII からのシグナル伝達が期待された。しかし、トランスデュ ーサーの signaling state があまりにもタンブル寄りであるが故に忌避応答がみられない 結果になったと考えている。このことから、光センサー・トランスデューサーの設計では、 単に両者を結合させれば良いのではなく、シグナル産生が可能なトランスデューサーの適 切な signaling state の実現が不可欠であると考えている。

次に、NpSRII-EcTsr(ESN)で見られた 500 nm 光照射に対するわずかな忌避応答を改善す るために、EcTsr(ESN)に更に3カ所(A209L、K215G、S217D)の変異導入を検討した。NpSRII との共発現系でこれらの変異を個別に検討すると、A209L 変異の追加はスムース寄りに、 K215G や S217D 変異の追加はタンブル寄りの泳ぎとなった。これら変異の組み合わせの中で Tsr(ESNLG)変異体がランダムな泳ぎを示し、光応答の実現を予感させた。実際に 1/8 秒の 500 nm 光照射に対する泳ぎを観察した結果、作成した多重変異体の中でこの Tsr(ESNLG) 変異体だけが NpSRII との共発現でよりはっきりとした忌避応答を示すことが分かった。

センサー・トランスデューサーの「結合」とトランスデューサーの「チューニング」に より、NpSRIIからの光シグナルを大腸菌走化性レセプター Tsr を介してべん毛まで伝える ことが出来たと考えている。今後、光に集散する走光性能の有無、或いは適応の有無等に 関して検討の予定である。

行動テストバッテリーによる神経変成疾患モデルマウスの認知機能評価

岸本泰司¹,長尾 明¹,東原絵理奈¹,福田明子¹,桐野 豊¹ (¹徳島文理大学•香川薬学部•生物物理学教室)

* kishimot@kph.bunri-u.ac.jp

神経発達障害や神経変性疾患の分子メカニズムの研究において、モデルマウスの活用は大変有力 な手段であるが、その中でも認知機能解析は、分子・細胞レベルから高次脳機能へと至る一連の 階層で最上位の試験として重要である。しかしそれ故に、単一の認知行動課題でプロファイリン グを行うことはしばしば実験全体の結論を誤った方向に導くことがあり、多数の行動試験を組み 合わせた行動テストバッテリーによって包括的な特徴付けを行うことが肝要である。さらに、神 経変性疾患の多くが長期間のうちに徐々に進行していく疾病であることを考えると、発達や加齢 を通じた長期の行動観察を行うことも望ましい。そこで本研究では、(1)発達期に発症する神経 変成疾患モデルとしてミオシン病の自然発症モデルマウス(dn マウス)および(2)老年期神経 疾患の代表例としてアルツハイマー病(AD)のモデルマウス(PS2/APP Tg マウス)の2種類の神 経変性疾患モデルマウスを材料に、それぞれ小脳依存性学習と海馬依存性学習能力について様々 な行動試験(運動協調試験、瞬目反射条件付け、モリス式水迷路試験、オープンフィールド、水 探索試験等)を多様な週齢の時点で解析することにより、これら疾病の分子メカニズムに迫った。 (1)ミオシン病自然発症モデルマウスにおける小脳学習機能解析

細胞内の輸送タンパクであるミオシン Va 遺伝子に変異を持ち、そのためミオシン Va が殆ど作 られない突然変異マウス(dn マウス)について行動解析を行った。瞬目反射条件付けについては これまで幼弱マウスへの適応が困難であったが、今回試みた実験技術の改良により、発達期から 成熟期までを通して dn マウスの運動学習能力を解析することが初めて可能となった。その結果、 dn マウスは、幼弱期(4 週齡)では野生型マウスと比べ顕著な運動学習障害を呈したが、興味深 いことにこの障害は性成熟に達する頃(8 週齡)までに野生型マウスと同様のレベルにまで回復す ることが判明した¹⁾。この認知機能の自然回復は、小脳シナプスにおける小胞体と IP3 レセプタ ーの修復、さらには小脳シナプス可塑性の回復と時期的に相関関係が認められるものであった。 (2) AD モデルマウスにおける海馬学習機能解析

これまでに多くの論文で様々な AD モデルマウスの認知行動解析がなされてきたが、そのうち殆 どの報告ではモリス式水迷路試験 (MWM) が単独で使用されている。今回、我々は3ヶ月齢という 非常に早期に脳内にβ アミロイド斑の沈着が観察される新規 AD モデルマウス (PS2/APP Tg マウス)²⁾ において、MWM に加え他 2 種の海馬依存性試験(瞬目反射トレース条件付け、水探 索試験)を、様々な週齢で解析した。その結果、PS2/APP Tg マウスは、水迷路試験では6ヶ月 齢で初めて顕著な障害を呈したのに対し、瞬目反射トレース条件付けではそれより少なくとも約 2ヶ月、水探索試験では約1ヶ月先行して学習障害を表出した。これらの結果は、従来 AD モデ ルマウスの認知評価系として繁用されている MWM が認知機能初期障害の検出法としては必ず しも最適な学習課題ではないことを示唆するとともに、同じ海馬依存性とされる学習課題の中で も、学習障害の加齢依存性は異なることを示すものとなった。

References

1) Miyata & Kishimoto et al., (2011) J. Neurosci. 31, 6067-6078.

2) Toda et al., (2011) J. Biomed. Biotech. 2011, 617974.

藤井 雅史, 粟津 暁紀, 西森 拓 (広島大学大学院理学研究科 数理分子生命理学専攻) mfujii0123@hiroshima-u.ac.jp

生体内では、多種多様なタンパク質や高分子が存在し、 それらはその種類に応じて様々な反応に関与すること で、生命活動を支えている.近年、このような高分子が 細胞内に数多く存在することの影響として、それらの排 除体積効果によって分子の移動が困難になる、Molecular Crowding という現象が示唆されている [1–3]. このよ うな考えを参考にすると、例えば、細胞膜上のシグナ ル伝達系では、有限の分子密度において伝達効率が最 大値をとると推測される [4].そこで本研究では、様々 な生物の細胞膜上において典型的なシグナル伝達系で ある、G タンパク質を介したシグナル伝達系を模した

講演番号

1-14

反応系について、分子の排除体積効果を取り入れた格子ガス系を用いて以下のようにモデル化し、分

子の混雑がシグナル伝達過程に与える影響を考察する.

(モデル) Receptor・Signaling protein (以下 Sprotein)・Target (以下 Target)の3種類のタンパク 質が存在し、それぞれを模した粒子が、六角格子で区 切られた二次元平面上をランダムウォークし、隣り合 う格子にいる粒子と以下の反応を行うものとする.

- (i) S-protein (不活性) + Receptor→ S-protein (活性) + Receptor
- (ii) S-protein (活性) + Target (膜上)
 → S-protein (活性) + Target (細胞質内)
- (iii) Target(細胞質内)^{確率 Pin} Target(膜上)

図 1: 本研究で扱うシグナル伝達系の 模式図. 細胞外から受け取った刺激を、 Receptor→Signaling→Targetの順に細胞膜 上で伝達する.

図 2: 不活性型 Signaling の初期密度 $[S_{tot}]$ (横軸)、Target の膜への結合確率 $P_{in}(縦軸)$ と Target の活性化頻度 J(濃淡) の間の関係. 色が薄いほど高い活性化頻度 を示している. Receptor の密度は 0.2.

以上のモデルにおいて、Receptorの密度とS-proteinの総密度 ($[S_{tot}]$)、Targetの膜への結合確率 (P_{in})と、単位時間あたりに活性型S-proteinがTargetを活性化させる頻度 (J)との関係を調べた。 その結果、図2のように、膜への結合確率が高い ($P_{in} = 1$)、すなわち、ほとんどの格子を粒子が占 めているような状況で、粒子の移動が困難であるにも関わらず、高い活性頻度を実現することが分 かった.そこでこのときの、各粒子の空間分布を計測すると、Targetを中心に特徴的な構造を形成 することが分かった。

本発表では、これらの結果から、混雑によって引き起こされる局所的な構造が系全体に与える影響 について議論する.

- [1] D. S. Goodsell, Trends in Biochemical Sciences 16, 203-206 (1991)
- [2] A. P. Minton, Methods in Enzymology **295**, 127-149, (1998)
- [3] R. J. Elis, Current Opinion in Structural Biology 11, 114-119 (2001)
- [4] S. B. Zimmerman and A. P. Minton, Annual Review Of Biophysics and Biomolecular Structure 22, 27-65 (1993).

1 - 15

大腸菌走化性受容体 Tar と基質との相互作用の等温滴定型熱量計(ITC)による測定: 比較的結合が弱い場合の解析

角井 碧¹、宫内正二²、下野和実²、奈良敏文²、田母神淳²、加茂直樹²* (1北海道大学生命科学院、2松山大学薬学部)

*nkamo@cc.matsuyama-u.ac.jp

等温滴定型熱量計(isothermal titration calorimetry, ITC)とは、一定温度下、滴定に伴う微小 熱量変化を測定して相互作用を調べる装置である。図1のようなデータが得られ、装置

(microcal 社製、VP-ITC) に付属した解析プログ ラムによって解離定数 K_dが決められ、相互作用に 伴う ΔG 、 ΔH が求まり、 ΔS を推定できる。本 実験のよう Tar (L-アスパラギン酸に対する走化 性受容体)大量発現株由来の大腸菌膜ベジクルを そのまま使う場合、ホストのタンパク量を決める ことが必要であるが、他のタンパク質の存在のた め困難である。ただし、リガンド(L-アスパラギ ン酸)が目的タンパク質以外に結合しないことを

確かめる必要がある(本実験では、図1から分

図1Tar を発現し ている*大腸菌膜ベジクル* (1.5)mg/mL)のITCデータ。100 mMリン酸緩衝液。25℃。 *ー回の滴定は 30μL. 内*挿図は Tar を発現していない かるようにこの可能性は少ない)。そこで、我々 膜ベジクルのデータ。Tar への結合は発熱反応。

は、図1に示す滴定による熱発生速度のデータを積分し、AQ累積熱量)vs C(全リガンド濃 度)のグラフを作り、そのカーブを解析することを試みた。リガンドとタンパク質との結合 の平衡式(n、化学量論数)、リガンドの保存則等を使用すると、次式を得る。

$$\Delta Q = \Delta H \cdot V_c \cdot \frac{\left(K_d + n \cdot C_p + C_t\right) - \sqrt{\left(K_d + n \cdot C_p + C_t\right)^2 - 4 \cdot n \cdot C_p \cdot C_t}}{2}$$

 V_c はセル体積である。非線形最小二乗法を用いて、 ΔH , K_d を求めることが出来る。 $n \cdot C_p$ も 求められる。C_nはセル内のタンパク質濃度である。このことは、逆に、ホストタンパク質 の濃度を知らなくても、Kaが求まることを意味している。膜タンパク量を変えてもほぼ一定 の K_d 値が得られた。 $K_{\mu}=1.5(\pm 0.3; n=5)\mu M$, $\Delta H=-9.8(\pm 0.6; n=5)$ kcal/mol, T $\Delta S=-1.8$ kcal/mol と求められた。結合はエンタルピー駆動型である。K,値は過去に走化性の実験か ら得られている値とよく一致した。アスパラギン酸の結合サイトを構成するアミノ酸残基 の変異体に対する L-アスパラギン酸に対する K_dを求めた。R64K, R73K, T154C では結合は ほとんど観測できず、走化性も 100-10000 倍低下した。一方、R69K は K~4 mM であったが、 走化性は 100-1000 倍低下し、Kaと走化性強度間に相違があった。R69 はシグナル伝達に重 要なのかもしれない。さらに、光駆動 Cl⁻ポンプであるハロロドプシンの Cl⁻結合は弱い結 合であるが、本方法で K_d値(~2 mM)を求めることが出来た。ただし、本法は次のような 問題点もある。1)滴定の最初で滴定液がセルに極少量漏れ出る可能性、2)滴定によっ て希釈されるので滴定中に C,が変化する(セル体積 1.4 mL に対し、0.1~0.15 mL)等であ る。http://www.pssj.jp/archives/Protocol/Measurement/ITC_01/ITC_01_01.html に、ITC の説明が記載されている。

DNA 塩基配列とアミノ酸モデルによる双極子ー双極子相互作用

三枝俊亮^{1,2}、相田美砂子^{1,2} (¹広島大院理,²広島大QuLiS)

mieda-shunsuke@hiroshima-u.ac.jp

【序】生体においてタンパク質等の特異的認識反応を予測・制御する上で、核酸塩基とア ミノ酸残基の認識部位の予測は重要である。しかし、核酸やタンパク質は非常に巨大であ るため、それらの反応について精緻な全電子計算を行うことは困難である。そこで、本研 究では、α-helixのアミノ酸残基モデルの双極子モーメントと、3塩基対(bp)以内の塩基配 列の双極子モーメントとの双極子一双極子相互作用を計算する。それにより、DNA塩基配 列とアミノ酸残基の双極子一双極子相互作用に基づいた選択性予測を試みる。

【方法】双極子モーメントは波動関数から直接求めた。α-helixのアミノ酸残基の双極子モ ーメントは、我々の事前研究により概ね 4.0 Debye であるという結果を得ている。このため 本研究では、大きさ 4.0 Debyeの双極子モーメントをモデルとして用いた。DNA 塩基対は Cs対称とし、B型DNAをとりあげる。ab initio MO法における計算レベルはMP2/6-311G** とし、Gaussian03を用いて計算を行った。双極子一双極子相互作用エネルギーは次式を用 いて計算した。

$$V(\mathbf{r},\theta_a,\theta_b,\phi_{ab}) = -\frac{\mu_a\mu_b}{4\pi\varepsilon_o r^3} (2\cos\theta_a\cos\theta_b - \sin\theta_a\sin\theta_b\cos\phi_{ab})$$

【結果・考察】GC 塩基対の双極子モーメントは 5.90 Debye であり、AT 塩基対は 1.27 Debye であった。図(A)と(B)は、X 軸方向に向いたモデル双極子モーメントと(A) 1bp の AT 塩基 対、(B) 1bp の GC 塩基対との相互作用エネルギーマップである。双極子一双極子相互作用 により、(A)では-5.86~1.97 kJ/mol の、(B)では-27.26~7.30kJ/mol の相互作用エネルギーが 生じることがわかった。すなわち、AT 塩基対と GC 塩基対は、双極子一双極子相互作用に より区別がつくことがわかる。また、塩基対を重ねると、塩基配列によって双極子一双極 子相互作用による安定性・不安定性共に 30kJ/mol 以上の違いがあることが分かった。この 相互作用エネルギーの違いにより、アミノ酸残基と塩基対配列の選択性を予測出来ると考 えられる。

溶媒中におけるポリマーの立体構造特性を解析するための効率的な方法

天野健一^{1*}, 尾嶋拓², 木下正弘² (¹京都大学大学院エネルギー科学研究科, ²京都大学エネルギー理工学研究所) * k-amano@iae.kyoto-u.ac.jp

溶媒中におけるポリマーの立体構造特性の解析は、タンパク質などの生体高分子や様々な 機能性高分子の物性の理解のために非常に重要である。しかし、その立体構造特性の理論 的取り扱いは非常に困難であり、計算コストも非常に高い。その主な理由は、次の2点にあ る:(i)溶媒効果を精密に考慮する必要があること;(ii)ポリマーを数多くの溶媒分子の集 団中に浸さねばならないこと。そこで、我々は溶媒中におけるポリマーの立体構造特性を 解析するための効率的な方法を提案する [1]。その方法は、モンテカルロ法と統計熱力学 理論(積分方程式論と形態熱力学の統合型)によって構築される。モンテカルロ法はポリ マーの構造サンプリングに使用され、ポリマーの各構造と平衡状態にある溶媒(無限個の 溶媒分子の集団)構造のアンサンブル平均および溶媒和自由エネルギー(または溶媒和エ ントロピー)を統計熱力学理論に基づいて超高速で計算する。この方法の利点は、溶媒効 果を理論的に取り込むことによって、系の自由度を大幅に低下させている点にある。結果 として、溶媒とポリマーを同時に扱う通常法と比べると、はるかに効率的にポリマーの立 体構造空間の探索を行うことができる。この方法を例証するために、今回我々は、剛体球 溶媒中の単純な一本鎖ポリマーの立体構造特性の解析を行う。今回の解析で使用されるポ リマーは大剛体球の結合体で、その立体構造は立方格子上の自己回避型ランダムウォーク で作成される。この方法で得られた計算結果が、溶媒とポリマーを同時に扱う通常法[2,3] で得られた結果と定性的に一致することを確認した。この発表の残りの部分では、この方 法がタンパク質の立体構造予測や熱変性、低温変性、圧力変性の研究などにも応用できる 事を議論する。

- [1] K. Amano, H. Oshima, and M. Kinoshita, Chem. Phys. Lett. 504 (2011) 7.
- [2] R. Chang and A. Yethiraj, J. Chem. Phys. 114 (2001) 7688.
- [3] J. M. Polson and M. J. Zuckermann, J. Chem. Phys. 116 (2002) 7244.

β₂-Microglobulin フラグメントが形成するアミロイド線維構造の真空紫外 CD 解析

松尾光一^{1,2*}, 平松弘嗣³, 月向邦彦⁴, 生天目博文¹, 谷口雅樹¹, Robert W. Woody² (¹広島大・放射光,²コロラド州立大,³岡崎統合バイオ,⁴広島大・サステナ)

* pika@hiroshima-u.ac.jp

放射光を用いた真空紫外CD (VUVCD)分光法は、高エネルギー遷移に基づくCDの検出 から、従来のCD分光法よりも高精度な蛋白質の二次構造(含量・本数・配列)解析が可能 であり、また様々な溶媒条件下でスペクトル測定ができるため、天然状態だけでなくアミ ロイド線維のような非天然状態の蛋白質にも応用可能である[1,2]。一方最近では、分子軌 道法を用いたCD理論の発展から、蛋白質立体構造の三次元座標よりCDスペクトルが算出で き、実測CDスペクトルとの比較が可能となってきた[3]。そこで本研究では、β2-microglobulin

(β₂-m) アミロイド形成のコアフラグメントである#21-29 (NFLNCYVSG, β₂-m₂₁₋₂₉)・ #21-31 (NFLNCYVSGFH, β₂-m₂₁₋₃₁)のアミロイド線維のVUVCDスペクトルを測定する と共に,分子動力学法とCD理論によりβ₂-m₂₁₋₂₉の理論スペクトルを算出し,VUVCD分光法 による水溶液中のアミロイド線維構造解析への有効性について検討した。

アミロイド化した 2 つのフラグメント (β_2 -m₂₁₋₂₉・ β_2 -m₂₁₋₃₁) は, それぞれ特徴的な CD ピーク位置や強度を示しながら、β-sheet 構造特有の VUVCD スペクトルを展開した。また 両スペクトルは、比較のため測定したβ2-mのアミロイド線維状態のスペクトルとも異なり、 VUVCD がアミロイド線維の形態の違いを敏感に反映することが分かった。蛋白質 VUVCD データベースを用いてフラグメントの二次構造解析[4]を行った結果,算出された二次構造 の成分スペクトルからは実測スペクトルが再現できず、二次構造以外の成分が多く含まれ ていることが示唆された。そこで、分子動力学法 (GROMACS) と CD 理論により、β2-m21-29 のアミロイド線維構造をシミュレートし,理論 CD の算出を試みた。β2-m21-29の初期構造は, β2-m20-41のアミロイド線維の立体構造(固体 NMR) [5] から得た。初期構造の構造最適化前 後の理論 CD を算出したところ, β₂-m₂₁₋₂₉の実測スペクトルとは大きく異なっており, β2-m21-29はβ2-m20-41中の構造とは異なったコンフォメーションを形成していることが分かっ た。β2-m21-29 フラグメント間のジスルフィド結合の有無・sheet 間の平行や逆平行・芳香族 残基側鎖の環境を考慮しながら, GROMACS によりβ,-m21-29のアミロイド線維構造をシミュ レート(20ns)した結果,得られた構造の理論 CD は,実験値に非常に近いスペクトルを示し た。また,理論スペクトルの主鎖と芳香族側鎖の成分スペクトルを計算した結果,両成分 のカップリングにより生じた CD がβ2-m21-29 スペクトルに大きく寄与していることが分かり, 二次構造解析で得られた結果を支持した。また、シミュレーションにより得られたβ-m_{21.29} アミロイド線維のβ-sheet 構造は, sheet 間で大きく捻じれ, 各ペプチドの両末端は unordered 構造になっていることが分かった。これらの結果は、CD 理論と組み合わせた VUVCD 分光 法が、水溶液中におけるアミロイド線維の構造解析に有効であることを示している。

References

[1] H. Hiramatsu, M. Lu, K. Matsuo, K. Gekko, Y. Goto, and T. Kitagawa *Biochemistry* **49**, 742–751 (2010).

[2] K. Matsuo, H. Namatame, M. Taniguchi, and K. Gekko Biochemistry 48, 9103–9111 (2009).

[3] R. W. Woody J. Am. Chem. Soc. 131, 8234–8245 (2009).

[4] K. Matsuo, R. Yonehara, and K. Gekko J. Biochem. 138, 79-88 (2005).

[5] K. Iwata, T. Fujiwara, Y. Matsuki, H. Akutsu, S. Takahashi, H. Naiki, and Y. Goto *Proc. Natl. Acad. Sci. USA* **103**, 10119–18124 (2002).

筒状容器における大球溶質の挿入と放出: 単純化モデルを用いたシャペロニン GroEL に関する理論解析

天野健一^{1*},木下正弘² (¹京都大学大学院エネルギー科学研究科,²京都大学エネルギー理工学研究所) *k-amano@iae.kyoto-u.ac.jp

シャペロニンGroELは筒型のタンパク質であり、変性状態タンパク質の折りたたみを補助す る機能がある事が知られている。その折りたたみの補助過程において、変性状態タンパク 質はGroELの筒のキャビティーに挿入され、その中で正常に折りたたまった(天然状態)タ ンパク質がそこから放出される。この挿入と放出のメカニズムを解明するために、本研究 を行う [1,2]。GroELやタンパク質のモデルをそれぞれ、筒型容器、大球溶質とし、それら を溶媒中に挿入する。その条件下での筒型溶質と大球溶質のPotential of Mean Forceを液 体の統計力学理論を用いて計算する。変性状態タンパク質はコンパクトに折りたたまって おらず、さらに疎溶媒性と親溶媒性の表面がランダムに露出している。また、天然状態タ ンパク質は、コンパクトに折りたたまれ、その露出表面は変性タンパク質よりも親溶媒性 が高い(疎溶媒性表面は天然構造内部に埋もれる傾向にあるから)。ゆえに、サイズが大 きめで、かつ、溶媒との親和性の低い大球溶質を変性タンパク質のモデルとし、サイズが 小さめで、かつ、溶媒との親和性が高い大球溶質を天然状態タンパク質のモデルとする。 GroELのキャビティーの内部は若干疎溶媒性である事が知られているので、GroELのモデル

(筒型容器)を溶媒と親和性の低いものとする。我々の計算によると、溶質の挿入は溶媒 のエントロピックな効果によってされる事が分かった。また、挿入された溶質はキャビテ ィーの中心付近で安定化される事も分かった。これらの結果は、実験結果と定性的に一致 する [3,4]。溶質の放出は溶媒のエナジェティックな効果によってなされる事も分かった。 この放出は、溶質が溶媒と親和性が低い大きめの球状溶質から親和性の高い小さめの球状 溶質に変化する事で実現すると考えられる。即ち、溶質のサイズが小さくなる事でエント ロピックな挿入の効果が小さくなり、溶媒との親和性が高くなる事で溶質がバルク溶媒中 に溶媒和した方がエネルギー的に安定化し、エントロピックな挿入の効果よりもエナジェ ティックな放出の効果の方が上まわった時に放出が起こる。この様に、シャペロニンGroEL のタンパク質の挿入と放出では、ナノメータースケールの空間内における溶媒和の効果が 巧妙に利用されていると考えられる。膜タンパク質の基質の運搬においても、同様の効果 が利用されていると考えられる。

- [1] K. Amano and M. Kinoshita, Chem. Phys. Lett. 488 (2010) 1.
- [2] K. Amano and M. Kinoshita, Chem. Phys. Lett. 504 (2011) 221.
- [3] K. Aoki et al., J. Biol. Chem. 272 (1997) 32158.
- [4] H. Saibil, S. Wood, Curr. Opin. Struc. Biol. 3 (1993) 207.

一細胞の自己組織化現象

竹本 あゆみ^{1*}, 柴田 達夫¹² (¹広島大学大学院, ²理化学研究所発生・再生科学総合研究センター) m112993@hiroshima-u.ac.jp

細胞性粘菌 Dictyostelium は飢餓状態になると自己生産する cAMP に対して走化性を示し、 集合体を作る。細胞性粘菌の1細胞は外部の走化性誘引物質である cAMP の濃度勾配に対 して極性を形成する。この細胞極性を制御するシグナル分子として、イノシトールリン脂 質の一種である PI(3,4,5)P₃(ホスファチジルイノシトール 3,4,5-トリスリン酸)が知られて おり、PI(3,4,5)P₃の細胞膜における濃度はリン酸化酵素である PI3K と脱リン酸化酵素であ る PTEN の酵素活性により調節される。そして cAMP の濃度勾配に対して、濃度の高い側 で細胞膜上に PI(3,4,5)P₃の濃度の高い局在が形成され、それがアクチン骨格形成を制御する ことにより仮足を形成し、自らの形態を変化させることで、走化性運動が実現されると考 えられている。[1][2]。

しかし、細胞膜上の PI(3,4,5)P₃濃度の高い局在ドメインは、cAMP の濃度勾配のない環境 下においても自発的に形成していることがわかった[3]。さらに、運動や形態変化が PI(3,4,5)P $_3$ の局在ドメインにおよぼす影響を排除するために、アクチン重合を薬剤で阻害しても、局 在ドメインは自発的に形成された[3]。このような PI(3,4,5)P₃の局在ドメインの形成は、 cAMP がないか、あるいは、濃度勾配のない環境下で細胞が自発的に示すランダムな運動と 関係していることが示唆されている。

本研究では、様々な濃度で空間的に一様な cAMP を与えた場合に、細胞膜上の PI(3,4,5)P3 の自発的な局在ドメイン形成のダイナミクスがどのように変化するかを調べた。そのため に、細胞性粘菌 Dictyostelium discoideum に PI(3,4,5)P3 の蛍光インジケーターを導入した細胞 を、アクチン重合阻害剤によって運動や形態変換の影響を排除し、PI(3,4,5)P₃の局在ドメイ ンのダイナミクスを蛍光顕微鏡により観察した。そして、各実験条件において細胞膜上の 蛍光強度の時空間変化をキモグラフに表わした。さらに、蛍光強度の時空間変化からその 自己相関関数、パワースペクトルを求めることにより PI(3,4,5)P3 の細胞膜上での局在とそ の運動の変化を調べた。 その結果、空間的に一様にあたえた cAMP の濃度の増加にとも ない、PI(3,4,5)P3 の局在ドメインの形成はより安定し、さらに細胞膜上を伝搬することがわ かった。

[1] PeterJ.M.VanHaastert and Peter N.Devectes(2004)CHEMOTAXIS:SIGNALLING THE WAY FORWARD

[2] Christopher Janetopoulosa, Richard A. Firtelb,(2008)Directional sensing during chemotaxis
 [3] Arai,Y.,Shibata,T.,Matsuoka,S.,Sato,M.J.,Yanagida,T.andUeda,M.(2010).Self-organization of the phosphatidylinositol lipids signaling for random cell migration. Proc. Natl. Acad. Sci. USA, 107(27): 12399-12404.

DHFR の局所変異に対する分子内揺らぎの変化の理論的考察

粟津暁紀^{*},海田大貴,西森拓 (¹広島大学大学院理学研究科 数理分子生命理学専攻) * awa@hiroshima-u.ac.jp

近年、タンパク質の機能のメカニズムを理解 するには、分子の構造のみならず、その構造 に伴って生じる運動との関係を理解する必要 があると考えられている。今回この分子の"構 造-運動-機能"関係について、ジヒドロ葉酸 還元酵素 (DHFR) を例に理論的考察を行う。

DHFR については、近年大前・月向らの実験 によって、活性部位から離れたナノ秒オーダ ーで揺らぐ、CD ループと呼ばれる局所構造に 対するーアミノ酸置換(構造を大きく変化させ ない小さな変異)によって、その酵素活性が 大幅に抑制される事が見出されている[1]。ま た楯らは、NMR スピン緩和解析から、この局 所変異が DHFR 全体のゆっくりとした(マイクロ 秒オーダーの)構造揺らぎに影響を及ぼし、分 子の構造間転移率の変化を引き起こすことを 見出している[2]。これらの知見は、これまで 無相関と思われていた各局所部位間に、運動 を介した大域的な相関が存在し、機能に大き な影響を及ぼしている事を示唆している。

本研究ではタンパク質の構造と運動性の関 係を議論するために、まずこのDHFRの局所変 異による、酵素活性の抑制のメカニズムを明ら かにする。今回そのために、野生型のDHFR 及びCDループに1アミノ酸置換が施された変 異体DHFRに対し、弾性ネットワークモデルを 用いた粗視化分子モデルを構築し、双方に対 する分子動力学シミュレーションと基準振動解 析を行い、比較・考察を行った。分子のモデル 化は以下のように行った。(1) Protein Data Bank から得られる DHFR結晶の原子座標デ ータを参考に、分子の基本構造を構築。 (2) NMR 測定により、変異導入(アミノ酸置 換)された部分周辺部では、形状は変化せず その運動性のみ変化する(揺らぎが抑制され る)事が示唆されていることから [2]、その領 域における力学パラメータを変化させるにより、 野生型分子及び変異型分子を表現。

図1はDHFRが安定的にとる6つの状態と、各 状態における野生型と変異型の分子モデルが 示す運動間の"相同性"を定量化したものであ る。この結果から、1rx4,1rx6 といった構造に おいて、変異の影響がより強く運動に寄与する ことが分かる。このことから、仮に野生型におけ る分子の運動が酵素反応に最適な運動である と仮定すると、酵素反応過程の中でも特に 1rx4, 1rx6 における反応過程が、局所変異 によって、より強く抑制されている事が示唆さ れる。

図1:DHFRの6つの状態と、各状態における 野生型と変異型の運動間の"相同性"

- E. Ohmae, K. Iriyama, S. Ichihara, and K. Gekko (1996) J Biochem 119 (4): 703-710.
- [2] S.Tate, private communication

グルタミン酸結合に伴う GluR2 リガンド結合ドメインの構造変化の MD シミュレーション

伊藤悦朗 (徳島文理大学・香川薬学部) eito@kph.bunri-u.ac.jp

イオンチャネル型グルタミン酸受容体(iGluR)によるイオン透過性の制御は、iGluRを形 成する一つのサブユニットであるGluR2が、グルタミン酸と結合した後に、そのリガンド結 合ドメインを閉じるという構造変化に起因する。このような構造変化は、X線結晶構造解析 から明らかになってきた。しかし、実験によってタンパク質の構造変化の「過程」を明ら かにすることは容易ではない。ましてや、リガンド結合部位の各アミノ酸残基が、どのよ うにグルタミン酸の結合過程ならびにリガンド結合ドメインが閉じる過程に関与するのか を明らかにすることは困難である。そこで今回われわれは、分子動力学(molecular dynamics: MD)シミュレーションで、GluR2のこれら二つの過程を解析し、次の4つの結果を見出し た。

(1) グルタミン酸はリガンド結合ドメインの静電場によって引き寄せられ、静電場が力 を及ぼす領域からは 15 ナノ秒でリガンド結合ドメインと結合する。

(2) グルタミン酸結合後のリガンド結合ドメインの自由エネルギーを解析すると、リガ ンド結合ドメインは開状態と閉状態との間に「セミオープン状態」が存在する。この状態 はリガンド結合ドメインの中あるいはリガンド結合ドメインとグルタミン酸との間の「水 素結合の生成消滅」によって作り出される。

(3) リガンド結合ドメイン内の一つのチロシンは、カチオン-パイ電子相互作用によっ てグルタミン酸を結合へと導く。

(4) グルタミン酸結合後に起こるリガンド結合ドメインの構造変化は、グルタミン酸結 合前のリガンド結合ドメインの動きから予想される範囲のものである。

とくに、本研究におけるリガンド結合ドメインの「セミオープン状態」は、MD シミュレ ーションを行うことによって初めて見出せた成果である。

なお本研究は、田辺三菱製薬株式会社の岡田興昌氏、湘北短期大学の小田井圭氏、関東 学院大学の杉本徹氏との共同研究である。

グルタミン酸が結合する
 前の GluR2 リガンド結合
 ドメインの「動き」の主成
 分解析。左が第一成分、右
 が第二成分。

脂質二重膜内パッキング状態のイメージング解析

松木 均^{1*},後藤優樹²,玉井伸岳¹ (¹徳島大院ソシオテクノサイエンス研,²徳島大院ヘルスバイオサイエンス研) * matsuki@bio.tokushima-u.ac.jp

脂質二重膜は温度や圧力と言った周囲の環境変化に鋭敏に応答し、その集合体構造を変 化させ相転移を引き起こす。一般によく知られているゲルー液晶間主転移においては膜内で 脂質分子の大きな構造変化(疎水鎖融解)が起こるために、ゲルおよび液晶両相の充填(パ ッキング)状態は容易に評価できる。他方、ゲルーゲル間相転移や二重膜-非二重膜間相転 移では膜内における脂質分子の構造変化が小さいため、これら相間におけるパッキング評 価は一概に難しい。脂質二重膜のパッキング評価には膜内に配向する蛍光分子の挙動を調 べる蛍光プローブ法が利用されている。脂質二重膜コア部に起因する相転移には疎水性プ ローブを、極性基部に起因する相転移には親水性プローブを用いるが、両プローブは測定 波長領域や膜内配向位置が異なるため種々の相転移を起こす脂質二重膜の各相間における パッキング状態に対して統一的な理解を得ることは困難である。

我々は、以前の研究において脂質分子の極性基頭部に配向する蛍光プローブの一種であ る6-propionyl-2-(dimethylamino)naphthalene (Prodan)が、通常のゲルー液晶間の主転移に加え、 ラメラゲルーリップルゲル間転移(前転移)などのゲルーゲル相間転移や指組み構造形成な どの二重膜-非二重膜間転移の際に、その極性基間配向位置を変化させ、大きなスペクトル 変化をもたらすことを示した¹⁾。さらにProdanの示す蛍光スペクトルに対して可視・紫外や 赤外分光研究で用いられている二次微分スペクトルを用いる解析法を適用し、Prodanの膜内 配向状態をより詳細に調べたところ、二次微分スペクトルの極小ピークは脂質分子構造に 関わらず各相状態に対応して特定の波長において明確な分離を示すことや二次微分スペク トルの強度は脂質分子の形状や脂質二重膜の大きさ(ベシクルサイズ)に依存して顕著に 変化することを見出した²⁾。最近、我々は脂質二重膜の温度-圧力相図に基づいて測定した Prodan蛍光の二次微分スペクトルを、圧力一定下、各測定温度間を補間しながらスペクトル の強度変化を色彩化し、波長、強度、温度に対して3次元プロットすることで脂質二重膜 内における脂質分子のパッキング状態を可視化するイメージング解析法を開発した³⁾。

ここでは、脂質二重膜内のパッキング状態が脂質分子構造の僅かな相違(アシル鎖長や 鎖の非対称性)およびベシクルサイズに依存して変化する様子について述べる。 References:

1) Kusube, M. et al. Biophys. Chem. 117 (2005) 199-206.

2) Goto, M. et al. Biochim. Biophys. Acta 1778 (2008) 1067-1078.

3) Goto, M. et al. Langmuir 26 (2010) 13377-13384.

メリチンのリン脂質膜内での非アレニウス揺らぎ

東 政行, 七種 和美, 粟津 暁紀, 泉 俊輔, (広島大学・院理・数理) M106730@hiroshima-u.ac.jp

序論

ミツバチのハチ毒に含まれるメリチン(GIGAVLKVLTTGLPALISWIKRKRQQ-NHゥ)は, リン脂 質膜と相互作用することで膜貫通構造をとる。これまで我々はメリチンのリポソーム膜内での構 造とその揺らぎ(膜内ダイナミクス)を質量分析と経時的なアセチル化修飾により解析してきた。 その際,膜内ダイナミクスの指標となるリポソーム膜内におけるメリチンのアセチル化修飾反応 のアレニウスプロットは30℃付近で傾きが変化すること(非アレニウス的)がわかっている¹。 そこで、本研究では、リポソーム内でのメリチンの非アレニウス揺らぎの原因を明らかにするた め, 揺らぎの異なる飽和と不飽和の脂質を用い, リポソーム内のメリチンの膜内ダイナミクスを 解析した。また、メリチンの膜内ダイナミクスの粗視化モデルを構築し、シミュレーションする ことで脂質の揺らぎの影響を考察した。

実験結果および考察

1. 揺らぎの異なる脂質で構成したリポソーム内のメリチンの膜内ダイナミクス

リポソームはDimyristoylphosphatidylcholine(DMPC), Dioleoylphosphatidylcholine(DOPC)の2つの リン脂質をそれぞれ単独で用いて調製した。それぞれのリポソームにメリチンを作用させ、その メリチン-リポソームを経時的にアセチル化修飾した後, MALDI-TOF MS測定した。得られた マススペクトルからリポソーム内のメリチンのアセチル化される速度(メリチンがリポソーム膜

外へ突出する速度)を算出した。さらにア Table 1. メリチンのDMPCリポソーム及びDOPCリポソーム セチル化の温度条件を変化させ,反応速度 定数をアレニウスプロットした。その結果, 膜状態の違いはメリチンの膜内での揺らぎ に影響を及ぼすことが示唆された(Table1)。

膜内での活性化エネルギー (kJ/mol)		
	リン脂質 : メリチン	
	150:1	1500:1
DMPC	27.7 ± 1.1	60.3 ± 0.50
DOPC	65.9 ± 0.68	64.6 ± 0.17

2. 分子動力学法によるメリチンのリン脂質膜内でのダイナミクス粗視化モデル

リン脂質膜に貫通したメリチンは12個の,脂質は4個の粒子(それぞれの粒子の半径は0.38と 0.40とした)の連結バネとして表現した(Fig. 1)。それぞれの粒子を結ぶ結合や水素結合にはバネ ポテンシャルを与え、メリチンとリン脂質、リン脂質同士の間で働く相互作用にはレナードジョ

ンズポテンシャルを与えた。そしてこのモデルを粒子への水 の影響をノイズと粘性抵抗で表したブラウン運動動力学法 でシミュレーションしてきた。さらに実験結果を受け、二種 類の膜の状態を表現したパラメータを用いて, シミュレーシ ョンしている。発表では、シミュレーション結果と実験結果 とを比較し、メリチンの膜内での揺らぎを考察する。

○・・・ メリチン

○・・・リン脂質

Fig. 1. メリチンの膜内ダイナミクス 数理モデル

<参考文献>

1) K. Saikusa, Y. Kono, S. Izumi, Biochem. Biophys. Res. Commun., 397, 1-4, (2010).

圧力摂動熱量法による

エステルおよびエーテル結合型リン脂質膜の体積挙動の解明

玉井伸岳^{1*},南部優子¹,後藤優樹²,松木 均¹ (¹徳島大院ソシオテクノサイエンス研,²徳島大院ヘルスバイオサイエンス研)

* tamai@bio.tokushima-u.ac.jp

物質の体積Vは、分子間相互作用や分子構造といった物質の微視的特性を反映した重要な 巨視的物理量である。また熱力学においても、Vは主要な変数の一つである。Vを正確に決 定するためには、系の平衡状態を可能な限り維持することが必要不可欠であり、特に溶液 のような多成分系に対して、それぞれの成分iの部分モル体積 v_i を正確に得るためには、例え ば 10^{-3} °Cオーダーでの温度制御など想像以上に困難な実験条件が不可避となる。そのため密 度測定や膨張率測定といった比較的単純な原理に基づく測定法によりVを測定できるにも かかわらず、溶液系に対する体積測定に関する研究例は比較的少ない。近年、圧力摂動熱 量法 (PPC) とよばれる熱量測定に基づく熱膨張率 α の測定方法が開発された。PPC測定に 用いられる熱量計は、示差走査熱量 (DSC) 法に用いられる熱量計と全く同じ構造を有して おり、圧力制御モジュールを接続することで、約5 bar程度の瞬間的な圧力変化に伴う熱の 出入り Δq を精度よく測定することができる。得られた Δq は、いくつかの熱力学関係式を適 用することで α に変換される。測定の対象は主に溶液系であり、溶媒(成分1) に対する Δq_1 と溶液に対する Δq との差 $\Delta \Delta q$ から、溶質(成分2)の見かけのモル体積 ϕ_2 に対する熱膨張率 α_2 を得ることができる。

これまで当研究室では、様々なリン脂質二分子膜に対して温度 T--圧力 P 相図を作成し、 また二分子膜相転移に伴う熱力学量変化を明らかにすることで、リン脂質分子の化学構造 が二分子膜相挙動に及ぼす影響について系統的に調べてきた。その際、転移熱力学量の一 つである体積変化ΔV を、実験より得られた転移エンタルピーΔH および転移温度の圧力依 存性 dT/dP に Clapeyron 式を適用し算出してきた。 ΔV は相転移前後でのリン脂質分子の ϕ の変化量に対応するため、各相における bcの絶対値をΔV 値から得ることはできない。そこ で本研究では、代表的なエステル結合型リン脂質であるジパルミトイルホスファチジルコ リン(DPPC)および対応するエーテル結合型リン脂質であるジへキサデシルホスファチジ ルコリン (DHPC) の水分散液に対して密度測定および PPC 測定を行い、これらリン脂質膜 の熱的な体積挙動を調べた。まず、両測定から得られた各リン脂質の 👧 の温度依存性を比 較し、それぞれの測定法の実験精度について確認した。次に、これらリン脂質二分子膜の 主転移(リップルゲル相から液晶相への転移)に伴うΔVをbの温度依存性曲線より求め、 これまでに熱力学計算より得られたΔV値との比較を行なった。なお、PPC 測定の結果に対 する一般的な解析方法からは相対値であるΔV/Vのみが得られるが、我々は解析方法を少し 改良することで転移に伴うΔV値を得た。最後に、これらリン脂質の_{Φ2}の温度依存性を詳細 に解析し、二分子膜中におけるリン脂質分子の分子構造と体積挙動との関連性を考察した。

コケ植物の環状ビスビベンジル分子マルカンチンによる 抗インフルエンザウイルス活性

畠山 大¹*, 岩井佑磨¹, 村上宏起², 五味康行², 奥谷武史¹, 橋本敏弘³, 浅川義範⁴, 奥野良信², 石川豊数², 越後典子¹, 葛原 隆¹
 (徳島文理大・薬・¹生化学, ³生薬学, ⁴薬化学, ²阪大微研・観音寺研究所)
 * daihatake926@ph.bunri-u.ac.jp

2009 年にはブタ由来 A 型インフルエンザが大流行するなど、人類にとってインフルエン ザウイルスは依然として大きな脅威である.現在,インフルエンザ治療にノイラミニダー ゼ阻害薬やM2タンパク質阻害薬が主流であるが、これらの分子には変異が生じやすく、耐 性ウイルスを生んでしまうという欠点がある.一方、ウイルス膜内部に存在する RNA ポリ メラーゼは変異が起こりにくく、抗インフルエンザ薬の作用点として耐性ウイルスが出現 しにくいと考えられる. A 型インフルエンザウイルスが有する RNA 依存性 RNA ポリメラ ーゼは、3種類のサブユニット(PA、PB1、PB2)から成り、核タンパク質複合体を形成して いる. そのうち, PA サブユニットはエンドヌクレアーゼ活性を持ち, 宿主細胞の mRNA の キャップ構造を含むオリゴヌクレオチドを切り取り、それをプライマーとしてウイルスゲ ノムの転写および複製を行う足掛かりとなる. これらの PA エンドヌクレアーゼ活性はイン フルエンザの遺伝子の転写やゲノム複製に重要であり、エンドヌクレアーゼ活性阻害剤が インフルエンザウイルスに対する新薬となる可能性がある.そこで,我々は PA サブユニッ トにおけるエンドヌクレアーゼ活性を阻害する化合物として、コケ植物ゼニゴケ Marchantia polymorpha に含まれるマルカンチンに注目した.マルカンチンは大環状ビスビベンジル構 造を有しており、これまでにも抗菌活性や 5-リポキシゲナーゼ阻害作用などの様々な生理 活性を示す事が知られている.本研究では、10 種類のマルカンチン型化合物について抗ウ イルス作用を検討した.このうち,カテコール骨格を有する5種類の化合物が PA エンドヌ クレアーゼ活性を阻害した.次に、これらをウイルスに作用させたところ、A型インフルエ ンザウイルス(H1N1, H3N2)では Marchantin E が, B 型インフルエンザウイルスでは Marchantin A, E, Perrottetin Fがウイルスの増殖を抑制した.以上より、これらの分子が共 通して持つカテコール基の水酸基がエンドヌクレアーゼ活性の抑制に重要であることが示 唆された. PA サブユニットをターゲットとするマルカンチン型化合物は,新しい抗インフ ルエンザ薬のシードとして期待できる.

図. PA エンドヌクレアーゼ活性の阻害効果を示したマルカンチン型化合物の構造

フグヘムオキシゲナーゼ活性の塩基性環境への順応

高田さゆり,植高梢,○右田たい子* (山口大農・生物機能) * ctmigita@yamaguchi-u.ac.jp

多くの生命体は、補欠分子族としてヘム(鉄ーポルフィリン錯体)を生命維持の根源的な ところで利用している。ヘムオキシゲナーゼ(HO)はヘムの分解に携わる酵素であるが、そ の作用は単なる不要物の処理ではなく、鉄イオンのリサイクルの主体であり、またヘム骨 格部分の代謝生成物は、シグナリングや抗酸化作用、あるいは他の光受容色素の合成資材 としての役割を持っている。遺伝子レベルではHOはほとんどの生命体が保有することが明 らかになっているが、活性を持つタンパクが得られヘム分解特性が研究されている生物種 のHOは、限られている。我々のグループは、様々な生物種のHOを調製し、活性部位を含む タンパクの構造特性の違いとヘム分解の微調整とのかかわりに注目し研究を行っている。

HOによるヘム分解は、3段階のモノオキシゲナーゼ反応によって行われる。酸素の活性化 は基質であるヘム自身が補欠分子族を兼ねて行うため、HO-ヘム複合体は他のヘムタンパク 酵素と分光学的特徴や反応機構に類似している点が多い。しかし、ヘム上での最初の酸素 活性化でヒドロペルオキシヘムの酸素原子間結合が解裂する際に、P450ではヘテロリシス、 HOではホモリシスが起こるように、ヘムの軸配位子と周辺残基が配置されている。このた め、前者ではCompound Iができ、ヘムは代謝回転ののち元に戻るが、後者ではヘムテトラ ピロール環の水酸化がおこり、逐次的な環の酸素化解裂が起こる。HOの独特な酸素利用を 決めているヘムの活性部位は、各種分光法による研究と共に結晶状態での反応の解析によ ってもかなりの部分明らかになっている^{1.2}。しかし、反応の微調整に関わる程度の変化は、 結晶解析では検出困難である。生物種間のHOの1次構造の保存性の程度は、進化的近縁性と いうよりはむしろヘム代謝の主目的-HOの働く環境の影響が高いようにも見える。

今回は、魚類(トラフグ)とラットの再構成HO-1のヘム分解のpH依存性を、6~9.5の範囲 で比較検討した。酸素活性化に必須の電子は、NADPH/シトクロムP450還元酵素(CPR)ある いはアスコルビン酸によって与え、両者についての比較も行った。速度解析と中間体の解 析は分光法で行った。これら2種のHO-1は、アミノ酸配列の相同性が高く(52%)、特にヘム 軸配位構造とヘムポケット構成アミノ酸はほとんど同一である。しかし、中性でのヘム分 解速度には大きな違いが見られ、NADPH/CPRとの共役ではフグHO-1が1.5倍速く、逆にア スコルビン酸との共役では1/2であった。pH依存性では、NADPH/CPR共役系では両者共に pH 7.5で分解速度がピークに達するが、フグではpH9.5でも最高速度の70%以上を示すが、 ラットではヘムのアルカリ型が安定でヘム分解は進行しないことがわかった。酸性側では 両者のヘム分解速度は共に大きく低下し、ヘム分解に必須とされているオキシヘムへのプ ロトン移動には、バルクのpHは全く寄与しないと推察される。一方で、アスコルビン酸共 役による反応速度は二つの酵素で全く対照的な結果を示した。ラットHOでは酸性側で活性 が高く(速度のピークはpH 7.0)、フグはpH 8.5までの塩基性側で高活性を示した。この違い は、ヘムの酸化還元電位とHO-1あるいはCPRの表面電荷分布の違いで説明できる。

¹ Rittle J, Green MT, Science (2010) 330, 933-937; ² Lai WL, Chen H, Matsui T, Omori K, Unno M, Ikeda-Saito M, Shaik S, JACS (2010) 132, 12960-12970.

ジヒドロ葉酸還元酵素 D27E 変異体の機能解析

大前英司¹*、和田侑士¹、楯真一¹、月向邦彦¹、桑島邦博²
 (¹広島大学大学院理学研究科、²自然科学研究機構岡崎統合バイオサイエンスセンター)
 * ohmae@hiroshima-u.ac.jp

溶液系は凝縮系であり分子間の相互作用が無視できない(分子間相互作用がないと系は 液体にならない)ため、溶液中におけるタンパク質の立体構造はタンパク質自身のエネル ギーではなく、系全体のエネルギーに依存して(系全体のエネルギーが最小になるように) 変化する。このため些細なアミノ酸の変異でも、分子間相互作用の違いによりタンパク質 の立体構造や安定性は大きな影響を受けることがある。また酵素の機能も、緩衝液の種類 や濃度、添加塩の種類や濃度などの系の変化に大きく依存することになる。実際、種々の 制限酵素の活性が緩衝液の種類や添加塩の濃度により大きく変化することは、各メーカー のカタログに詳しく記載された周知の事実となっているが、近年の構造生物学をベースに した構造機能相関の研究や酵素反応機構の研究では、このような溶液条件の違いによる立 体構造や機能への効果はしばしば忘れられている。

大腸菌由来のジヒドロ葉酸還元酵素(DHFR)も、リン酸緩衝液の使用や NaCl、KCl な どの塩の添加により活性が低下することが以前から知られている^{1,2}。昨年、我々は偶然に NaCl を添加しても活性が低下しない DHFR の変異体を得たが、これは活性部位 Asp27 の Glu への変異(D27E)であることがわかった。D27E 変異体の酵素機能を野生型 DHFR と 詳しく比較した結果、1 価カチオンによる活性阻害の消失、至適 pH の酸性側への大きなシ フト、基質に対する親和性の低下などが観察され、D27E 変異体では基質の結合サイトが野 生型よりも少し溶媒に露出した構造をとっており、プロトンの転移が酵素反応の律速過程 になっていると考えられた。また CD および蛍光スペクトルの測定からも、この構造変化 を支持する結果が得られた。このような水和量の変化は圧力に対する挙動に大きな変化を もたらすと考えられるため、酵素活性の圧力依存性を測定したところ、野生型 DHFR では 加圧に伴って活性が低下するのに対して、D27E 変異体では加圧に伴って活性が増加するこ とがわかった。しかしながら結晶構造解析では、このような基質結合サイトの違いは検出 できていなかった³。

これらの結果は、わずかメチレン1個の 違いでも溶液中におけるタンパク質の立 体構造が変化し、これに伴って酵素の機能 が大きく変化することを明確に示してお り、酵素機能の解析では測定条件の選択や 変異の導入、結晶構造の解釈などに細心の 注意を払う必要があることを示している。

¹ Baccanari DP *et al.* Biochemistry **14**, 5267 (1975)

² Wright DB *et al.* J. Mol. Biol. **323**, 327 (2002)

³ David CL et al. Biochemistry **31**, 9813 (1992)

野生型および D27E 変異体 DHFR の 比活性の圧力依存性

哺乳類の100kDa ヘキソキナーゼの酵母ミトコンドリアへの結合の可能性

○尾華絵里子 1.2、栗間絵梨 1.2、橋本 満 3、山本武範 1、篠原康雄 1.2
 (1徳島大疾患ゲノム研、2薬、3松山大薬)
 * obana@genome.tokushima-u.ac.jp

解糖系は広く生物に保存された糖代謝経路である。解糖系の律速反応は、グルコースか らグルコース 6-リン酸を産生する第一反応であるが、この反応はヘキソキナーゼ (hexokinase: HK) によって触媒される。哺乳類 HK には4 種類のアイソフォーム(I~ IV型)が存在し、I~Ⅲ型は約100kDa、IV型は約50kDaの1本のポリペプチドである。 これらのうち、Ⅰ型、及びⅡ型は発現レベルが高い組織においてミトコンドリアに結合す るという特徴的な挙動を示す。哺乳類 HK がミトコンドリアへ結合することによって、解 糖系の亢進やアポトーシス抵抗性の獲得など、癌細胞に特徴的な形質変化が引き起こされ ることから、結合状態の解明は治療標的を開拓する上でも注目されている。過去の報告か ら、哺乳類 HK はミトコンドリア外膜の poirn と結合していると考えられている。しかし ながら、これまでの解析は、一度単離した哺乳類 HK とミトコンドリアを混合するという 方法で行われてきたため、細胞内の条件下での結合状態は詳細に解析されていない。この 問題を解決するためには、遺伝子改変が容易な酵母の発現系が有用であると考えられるこ とから、まず哺乳類 HK は酵母の内在性の porin と相互作用し、ミトコンドリアへ結合す るのかどうかを明確にする必要がある。そこで本研究では酵母を用いた哺乳類 HK のミト コンドリアへの結合状態の解明に向け、哺乳類 HK が酵母ミトコンドリアへ結合するかど うかを明らかとすることを目的に以下の解析を行った。

まず演者らは、酵母における哺乳類のⅠ型、及びⅡ型 HK の発現ベクターを構築するた め、高発現している組織の総 RNA から cDNA を合成し、単離した ORF 領域を用いて発現 ベクターを構築した。次に、この発現ベクターから哺乳類 HK が発現するかどうかを検証 するため、大腸菌における発現を試みた。まず、大腸菌抽出液を SDS-PAGE、及び CBB 染色に供したところ、予想される移動度の位置に明瞭なバンドが検出された。そこで続い て、哺乳類 HK が発現しているかどうかを免疫的に検証するために特異抗体を作製し、大 腸菌抽出液を Western blotting に供した。その結果、単一の明瞭なバンドが検出されたこ とから、大腸菌において哺乳類 HK が発現していることが示された。これらのことから、 酵母においても哺乳類 HK が発現する可能性が強く示唆されたため、次に酵母における発 現を試みた。まず、酵母をホモジナイズして粗抽出液を調製し、Western blotting に供した ところ、I型、及びⅡ型とも単一の明瞭なバンドが検出された。このことから、酵母にお いて哺乳類 HK が発現していることが示された。そこで続いて、哺乳類 HK の細胞内分布 を解析するために粗抽出液を遠心分離し、細胞質画分、及びミトコンドリア画分を調製し た。その後、同様に哺乳類 HK を検出したところ、細胞質画分においては明瞭なバンドが 検出されたが、ミトコンドリア画分においてはバンドが検出されなかった。このことから、 発現させた哺乳類 HK はミトコンドリアではなく、細胞質に存在していることが示された。

本解析により、哺乳類 HK の酵母発現系の構築に成功し、哺乳類 HK は酵母ミトコンド リアへ結合しないことが明らかとなった。従って、本研究における酵母発現系の有用性が 示されたため、今後は哺乳類 porin の発現株を用いて結合状態を詳細に解析する予定である。

ガレクチンの糖認識ドメインについての NMR を用いた解析

野中康宏^{1*},小川崇¹,中北愼一²,神鳥成弘²,西望²,中村隆範¹ (¹香川大・医,²香川大・総合生命科学研究センター) * nonaka@med.kagawa-u.ac.jp

【緒言】動物レクチンの一種であるガレクチンファミリーは、免疫応答、癌、発生など、 様々な生理現象に関わっていると考えられている。ヒトではガレクチン1~15が報告さ れており、いずれもβガラクトシド構造を特異的に認識するが、各ガレクチンは枝分れ構 造やシアル酸などの構造に対する親和性が大きく異なっており、これが機能の多様性につ ながっていると考えられる。また、ガレクチンは構造的特徴から、一つの糖認識ドメイン のみで構成されるproto型、糖認識ドメインと他のドメインからなるchimera型、二つの糖認 識ドメインを持つtandem-repeat型に分類される。近年、proto型の構造や、chimera型、 tandem-repeat型の糖認識ドメインの構造がX線結晶解析によって示され、糖鎖認識のメカニ ズムが徐々に明らかになってきた。NMR解析では特にガレクチン1 (proto型)について、構 造解析や相互作用解析が進められている。しかし、糖鎖認識と機能の関わりについては未 だ不明な点が多く、この3種類のドメイン構造の役割も明らかではない。

本研究ではtandem-repeat型の構造に着目し、その中でも生理機能について研究が進んでいるガレクチン9について、構造と機能の関わりを明らかにすることを目的としている。ガレクチン9は二つの糖認識ドメインとリンカーから構成される。T細胞に対してアポトーシスを誘導することが大きな特徴であり、これによる免疫制御がガレクチン9の生体内での主な役割ではないかと推測されている。糖認識ドメインの結晶構造はN末側(NCRD)、C末側(CCRD)ともに明らかにされている。

【結果】全長ガレクチン9のNMR解析は分子量(35 kDa)、溶解度の点で技術的困難を伴うと 予想されたので、始めにC末側糖認識ドメイン(CCRD)の解析に着手した。濃縮条件の検討 を行ない、pH 6、低塩濃度の溶液条件で1 mM程度までの濃縮を達成した。この条件で¹⁵N/¹³C 標識体を用いて測定を行ない、N末側(リンカー付近)のPro-rich領域を除くほぼ全ての主鎖由 来シグナルを帰属した。化学シフト値に基づく二次構造予測の結果は結晶構造とよく一致 した。

ラクトースおよび枝分れ糖鎖による滴定実験を行なった結果、結晶構造における糖鎖結 合部位と、それ以外の一部の残基(F5-H1ループ)でHSQCシグナルのシフトが見られた。 DLS(動的光散乱)測定によると、ラクトース非存在下でdimer、ラクトース存在下でmonomer を取ることが示されたため、滴定実験では結晶構造と同様のリガンド結合に加えて、 dimer-monomerの解離も観察されている可能性が高い。

全長ガレクチン9とCCRDのアポトーシス誘導活性を調べると、CCRDではより蛋白濃度を 高くする必要があったが(全長:>0.6 µM, CCRD:>2 µM)、活性が見られた。ガレクチンの活 性発現には多価性が重要であると考えられているため、CCRDがオリゴマー化することで、 一方のドメインのみでも活性を示すのではないかと推測できる。HSQCスペクトル測定にお いて、リガンド結合部位の反対側に位置するいくつかの残基(F2, F3シート)由来の信号に蛋 白濃度依存性が観察された。この部位を介した多量体形成の可能性を示唆しており、これ がCCRD単独で示す活性に関わっているのかもしれない。

酸化 LDL 受容体蛋白質 LOX-1 の基質認識機構の解明

杉原 守,山田 梨紗都,編田 宏一,楯 真一,(広島大・院理・数理分子)M113914@hiroshima.u.ac.jp

血液中でコレステロールキャリアとして機能する LDL (Low Density Lipo-protein)は、生体内で発生する活性酸素種 (Reactive Oxygen Species: ROS) により酸化され、酸化 LDL (OxLDL)になる. OxLDL は、動脈硬化誘導の原因分子である. 生体内には OxLDL を認識する一群の受容体蛋白質が存在し、スカベンジャー受容体 (scavenger receptor) と総称される. スカベンジャー受容体は主にマクロファージ上に存在するが、血管内皮細胞上にも存在し血液中で発生する OxLDL を認識する. 本研究で対象とする LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1)は、血管内皮細胞上に存在する主要な酸化 LDL 受容体蛋白質として同定された. LOX-1 は、血液中の OxLDL と相互作用することで血管内皮細胞の機能不全 (dysfunction) を誘導し、これが動脈硬化発症のトリガーになると考えられている.

私たちの研究室では,酸化 LDL 受容体蛋白質の初めての立体構造例となる LOX-1 基質 認識部位の立体構造を発表した¹. LOX-1 はジスルフィド結合を介してホモ二量体を形成し, 二量体表面には特徴的な塩基性残基の並び(basic spine 構造)をもつ.変異体を用いた解 析から, basic spine 構造が OxLDL 認識に重要であることを示している.種々の考察から, 私たちは LOX-1 が酸化 LDL を構成する蛋白質である ApoB-100 中に繰り返し現れる両親 媒性 helix 部を認識するというモデルを提唱している.今回の研究では,LOX-1 がどのよ うにして巨大な OxLDL 粒子を認識するかを,LOX-1 と OxLDL の相互作用解析から明ら かにすることを目的とした².

表面プラズモン共鳴法(SPR)を用いた解析から、LOX-1 基質認識ドメインは単量体ではほ とんど OxLDL に結合せず、OxLDL との相互作用にはホモ二量体構造が必要であることが 分かった.しかし、ホモ二量体の LOX-1 のみでは OxLDL に対して解離定数 10⁻⁵ M 程度の 親和性しかし示さず、細胞上の LOX-1 で観測された OxLDL に対する親和性よりも 3 桁以 上弱い.したがってホモ二量体 LOX-1 受容体単独では、十分な強度で OxLDL 認識ができ ない.次に、ビオチン化した LOX-1 要容体単独では、十分な強度で OxLDL 認識ができ ない.次に、ビオチン化した LOX-1 基質認識ドメインを 4 つのビオチン結合サイトをもつ ストレプトアビジンを介して固定化し、LOX-1 基質結合ドメインを表面に集積させたセン サーを作成して OxLDL との相互作用を解析した.センサー表面に集積した LOX-1 は解離 定数 10⁻¹⁰ M 程度の強度を示した.このことから、LOX-1 の基質認識には細胞膜上に集積 することが必要であり、私たちが提唱したモデルのように、複数の LOX-1 が同時に OxLDL と相互作用することで高い親和性を実現することが示された².

発表では上記の結果に加え,集積構造に含まれる個々のLOX-1が安定なホモ二量体構造 を維持することの必要性についても最新の実験結果を用いて議論する.

References

- 1. Ohki, I., Ishigaki, T., Oyama, T., Matsunaga, S., Xie, Q., Ohnishi-Kameyama, M., Murata, T., Machida, S., Morikawa, K., and ***Tate, S.**, *Structure* 13, 905-917 (2005).
- 2. Ohki, I., Amida, H., Yamada, R., Sugihara, M., Ishigaki, T., and ***Tate, S.**, *BBA*, 1814, 345-354 (2011)